glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation

A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided.

Version: 1.6.1
Imports: stats, minqa, Matrix, Rcpp (≥ 0.12.12), methods, GMMBoost
LinkingTo: Rcpp, RcppEigen
Published: 2022-05-11
Author: Andreas Groll
Maintainer: Andreas Groll <groll at>
License: GPL-2
NeedsCompilation: yes
CRAN checks: glmmLasso results


Reference manual: glmmLasso.pdf


Package source: glmmLasso_1.6.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): glmmLasso_1.6.1.tgz, r-oldrel (arm64): glmmLasso_1.6.1.tgz, r-release (x86_64): glmmLasso_1.6.1.tgz, r-oldrel (x86_64): glmmLasso_1.6.1.tgz
Old sources: glmmLasso archive

Reverse dependencies:

Reverse imports: autoMrP


Please use the canonical form to link to this page.