glmdisc: Discretization and Grouping for Logistic Regression

A Stochastic-Expectation-Maximization (SEM) algorithm (Celeux et al. (1995) <>) associated with a Gibbs sampler which purpose is to learn a constrained representation for logistic regression that is called quantization (Ehrhardt et al. (2019) <arXiv:1903.08920>). Continuous features are discretized and categorical features' values are grouped to produce a better logistic regression model. Pairwise interactions between quantized features are dynamically added to the model through a Metropolis-Hastings algorithm (Hastings, W. K. (1970) <doi:10.1093/biomet/57.1.97>).

Version: 0.6
Imports: caret (≥ 6.0-82), dplyr, magrittr, gam, nnet, RcppNumerical, methods, MASS, graphics, Rcpp (≥ 0.12.13)
LinkingTo: Rcpp, RcppEigen, RcppNumerical
Suggests: knitr, rmarkdown, testthat (≥ 2.1.0), covr
Published: 2020-09-30
Author: Adrien Ehrhardt [aut, cre], Vincent Vandewalle [aut], Christophe Biernacki [ctb], Philippe Heinrich [ctb]
Maintainer: Adrien Ehrhardt <adrien.ehrhardt at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Citation: glmdisc citation info
CRAN checks: glmdisc results


Reference manual: glmdisc.pdf
Vignettes: 'glmdisc' package


Package source: glmdisc_0.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): glmdisc_0.6.tgz, r-oldrel (arm64): glmdisc_0.6.tgz, r-release (x86_64): glmdisc_0.6.tgz, r-oldrel (x86_64): glmdisc_0.6.tgz
Old sources: glmdisc archive


Please use the canonical form to link to this page.