sourceR: Fits a Non-Parametric Bayesian Source Attribution Model

Implements a non-parametric source attribution model to attribute cases of disease to sources in Bayesian framework with source and type effects. Type effects are clustered using a Dirichlet Process. Multiple times and locations are supported.

Version: 1.1.0
Depends: R (≥ 3.4.0), dplyr, tensorA, assertthat
Imports: methods, Rcpp (≥ 1.0.4), gtools, R6, cluster, stats, gplots, SPIn, grDevices, reshape2
LinkingTo: Rcpp
Suggests: testthat, R.rsp
Published: 2020-08-31
Author: Poppy Miller [aut, cre, cph], Chris Jewell [aut], Jonathan Marshall [ctb], Nigel French [ctb]
Maintainer: Poppy Miller <p.miller at>
License: GPL-3
NeedsCompilation: yes
CRAN checks: sourceR results


Reference manual: sourceR.pdf
Vignettes: Using sourceR


Package source: sourceR_1.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): sourceR_1.1.0.tgz, r-release (x86_64): sourceR_1.1.0.tgz, r-oldrel: sourceR_1.1.0.tgz
Old sources: sourceR archive


Please use the canonical form to link to this page.