remiod: Reference-Based Multiple Imputation for Ordinal/Binary Response

Reference-based multiple imputation of ordinal and binary responses under Bayesian framework, as described in Wang and Liu (2022) <arXiv:2203.02771>. Methods for missing-not-at-random include Jump-to-Reference (J2R), Copy Reference (CR), and Delta Adjustment which can generate tipping point analysis.

Version: 1.0.0
Depends: R (≥ 2.10)
Imports: JointAI, rjags, coda, foreach, data.table, future, doFuture, mathjaxr, survival, ggplot2, ordinal, progressr, Matrix, mcmcse, reshape2
Suggests: knitr, rmarkdown, bookdown, ggpubr, testthat (≥ 3.0.0), spelling
Published: 2022-03-14
Author: Ying Liu [aut], Tony Wang ORCID iD [aut, cre]
Maintainer: Tony Wang <xwang at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
SystemRequirements: JAGS (
Language: en-US
Materials: README
CRAN checks: remiod results


Reference manual: remiod.pdf
Vignettes: Introduction to remiod


Package source: remiod_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): not available, r-release (x86_64): not available, r-oldrel: not available


Please use the canonical form to link to this page.