
Estimation of probability associated with collective

counterfactual outcomes
Youjin Lee

Approximation of Directed Acyclic Graph (DAG)

In social network, treatments may spill over from the treated individual to his/her social contacts and
outcomes may be contagious continuously. Therefore, causal inference using observational data from a single
social network requires observing longitudinal data on treatments and outcomes as they evolve in real-time, so
that every spillover or contagious event appears in the data. In these settings, directed acyclic graph (DAG)
has been used to represent interference and contagion, but DAGs can quickly be cumbersome. Especially in
most cases it is impossible to collect the kind of real-time data required. If it is, the resulting model will be
generally high-dimensional and often too big to fit the available data.

To illustrate, using simcausal R package, we can define DAG object where outcome variables of (Y t
1

, Y t
2

, Y t
3

)
change over times t = 0, 1, 2, . . . , 20 while unit-specific treatment variable (A1, A2, A3) has a causal effect on
each of them. Figure 1 illustrates data generating mechanism or causal relationship which a DAG object of
lDAG stands for.

devtools::install_github('osofr/simcausal', build_vignettes = FALSE)

library(simcausal)

library(igraph)

draw Figure 1

par(mar = c(4, 4, 1, 1))

plotDAG(lDAG, tmax = 10, xjitter = 0.3, yjitter = 0.1,

edge_attrs = list(width = 0.2, arrow.width = 0.5, arrow.size = 0.3),

vertex_attrs = list(size = 10, label.cex = 0.5, label.color = "dodgerblue"),

verbose = FALSE)

Note that for causal inference, DAGs are only useful when if we observe all of the Y t
i variables. However we

often observe outcomes at certain time point after some unknown process of interference or contagion: in the
above case, (Y t=20

1
, Y t=20

2
, Y t=20

3
).

If Y t
i is approximated equal to Y t−1

i , the conditional independence implied by the chain graph, which includes
directed edges and undirected edges with no directed cycles, holds approximately in the DAG model under
certain conditions (Ogburn et al. (2018)). In the above case, conditional (in)dependence structure in DAG
from Figure 1 (approximately) holds for those of chain graph in Figure 2.

draw chain graph components from lDAG (Figure 2)

library(netchain)

par(mar = c(4, 4, 1, 1))

plotCG(lDAG)

Input observations

Chain graph can be used to define hybrid graphical models combining features of both log-linear models on
undirected graphs and DAG models that are used to represent causal relationships. Chain graph is useful for
causal inference in network data mainly because it provides justification of parsimonious conditional log-linear
models to identify causal effects on the collective outcomes.

To estimate the parameters in conditional log-linear model, we require enough independent replicates of
observations. Observations must take a form of a m × n matrix for binary Y and A respectively, where m is

1

https://arxiv.org/abs/1812.04990

A1_0

A2_0

A3_0

Y1_0

Y2_0

Y3_0

Y1_1

Y2_1

Y3_1

Y1_2

Y2_2

Y3_2

Y1_3

Y2_3

Y3_3

Y1_4

Y2_4

Y3_4

Y1_5

Y2_5

Y3_5

Y1_6

Y2_6

Y3_6

Y1_7

Y2_7

Y3_7

Y1_8

Y2_8

Y3_8

Y1_9

Y2_9

Y3_9

Y1_10

Y2_10

Y3_10

Figure 1: plotting an example of evolving outcome variables (Y1, Y2, Y3) and treatment variables (A1, A2, A3)
following directed cyclic graph of lDAG.

A1_0

A2_0

A3_0

Y1

Y2
Y3

Figure 2: Plotting chain graph component from lDAG.

2

the number of units and n is the number of independent observations. Depending on the contexts of your
scenario, we can enter no confounders (Defaults to listC = NULL), a m × n matrix for listC, or a list of
m × n matrices for listC for which of each matrix stands for observations for one confounding factors (we
later call them C1, C2, . . . , Cq).

We provide a simple function simGibbs to generate binary (Y, A, C) from chain graph model under simple
scenario, which requires additional structural information (weight.matrix, treat.matrix, and cov.matrix).
Consider the following conditional log-linear model following chain graph model defined up-to two-way
interaction effects:

p
(

Y = (y1, y2, . . . , ym) | A = a, C = c
)

=
1

Z
exp

m
∑

i,j=1

wijyiyj +

m
∑

i,j=1

kijaiyj +

m
∑

i,j=1

hijciyj

A weight.matrixij (wij) indicates two-way interaction effects between Yi and Yj when i 6= j and main effect
of each outcomes when i = j. Note that by the construction of chain graph model, weight.matrix should be
symmetric. A treat.matrixij (kij) indicates a direct causal effect of Ai on Yj ; a cov.matrixij (hij) indicates a
direct causal effect of Ci on Yj . By the definition, treat.matrix and cov.matrix are directional.

The following codes generate n = 100 (n.gibbs×n.sample = 10 × 10) observations of m = 3 (n.unit = 3)
units assuming chain graph of Y1 − −Y2 − −Y3 and direct effect from Ai → Yi and Ci → Yi for i = 1, 2, 3.

library(netchain)

weight.matrix = matrix(c(0.5, 1, 0, 1, 0.3, 0.5, 0, 0.5, -0.5), 3, 3)

simobs = simGibbs(n.unit = 3, n.gibbs = 10, n.sample = 10,

weight.matrix,

treat.matrix = 0.5*diag(3), cov.matrix= (-0.3)*diag(3))

inputY = simobs$inputY

inputA = simobs$inputA

inputC = simobs$inputC

head(inputY)

#> [,1] [,2] [,3]

#> [1,] 1 1 1

#> [2,] 1 1 0

#> [3,] 1 1 0

#> [4,] 1 1 1

#> [5,] 1 1 1

#> [6,] 1 1 1

head(inputA)

#> [,1] [,2] [,3]

#> [1,] 0 1 0

#> [2,] 0 1 0

#> [3,] 0 1 0

#> [4,] 0 1 0

#> [5,] 0 1 0

#> [6,] 0 1 0

head(inputC)

#> [,1] [,2] [,3]

#> [1,] 0 1 1

#> [2,] 0 1 1

#> [3,] 0 1 1

#> [4,] 0 1 1

#> [5,] 0 1 1

#> [6,] 0 1 1

3

Input edge information

With (outcomes, treatment, confounders) = (inputY, inputA, listC), we ultimately aim to calculate
probability associated with counterfactual collective outcomes given a certain unit-specific treatment of length
m, a (treatment):

P
(

Y(a) = y
)

.

Depending on the form of target outcomes of y, targetoutcome may vary: in the above example of m = 3
units, targetoucome = (1,0,0) indicates we want to calculate P

(

Y(a) = (1, 0, 0)
)

. If we want to calculate
the probability of multiple outcomes, e.g. homogeneous (unanimous) outcomes of (0,0,0) or (1,1,1), you
can input a matrix targetoutcome = rbind(c(0,0,0), (1,1,1)). If you want to calculate the probability
when only one unit has one, instead of listing all mutually exclustive, possible outcomes targetoutcome =

rbind(c(1,0,0), c(0,1,0), c(0,0,1)), you can specify the number of one (or maximum value of inputY):
targetoutcome = 1. The default is targetoutcome = "mean", which calculate E[Ȳ] := E[(Y1 + Y2 + . . . +
Yn)/n].

Most tricky but important part is edge information (R.matrix, E.matrix, and edgeinfo), which determines
the factors put in the conditional log-linear model.

A R.matrix is m × m relational symmetric matrix where R.matrixij = 1 indicates Yi and Yj are adjacent,
meaning the existence of interactions of feedback between the two. A E.matrix a m × m matrix where
E.matrixij indicates Ai has a direct causal effect on Yj ; defaults to diagonal matrix, which indicates no
interference. On the other hand, edgeinfo a list of matrix specifying additional directed edges (from
confounders (specified in listC) or treatment (inputA) to the outcomes (inputY)) information. Assume
that edgeinfo = list(mat1, mat2) where both mat1 and mat2 are matrices. For each matrix the first
column specifies the types of variables that must involve outcome variable, "Y"; while "A" indicates treatment
variable and "C" indicates confounder. If you input multiple confounders in listC as a list, "C1" indicates
the first confounders, "C2" indicates the second, and so on. For each matrix the second column specifies an
index for unit corresponding to the varaible in the first column. For example,

mat1 = rbind(c("Y", 1), c("A", 1), c("A", 2))

implies that A1 and A2 have a direct causal effect on Y1 and these two have a interaction effect; this will lead
to three-way interaction term of Y1, A1, and A2 in the conditional log-linear model. (In this case a direct
effect of A1 on Y1 and A2 on Y1 should be also (manually) specified.)

mat2 = rbind(c("Y", 1), c("C1", 1), c("C2", 1))

When you have multiple confounders and these confounders interactively have an effect on the outcomes, you
can put edge information as mat2, which implies a direct effect of C11 and C21 on Y1 but these effects are
dependent each other. (In this case, you should include rbind(c("Y", 1), c("C1",1)) and rbind(c("Y",

1), c("C2", 1)) in edgeinfo manually.)

Counterfactual outcomes

With those observations and edge information, the next step is to infer parameters in the conditional log-linear
models, and with those parameters we generate counterfactual outcomes using Gibbs sampling. Gibbs
sampling requires given treatment assignment, the number of independent Gibbs samplings (n.gibbs), the
number of samples per each iteration (n.sample), and the number of burn-in samples (n.burn) per each
iteration.

set.seed(1234)

library(netchain)

weight.matrix = matrix(c(0.5, 1, 0, 1, 0.3, 0.5, 0, 0.5, -0.5), 3, 3)

simobs = simGibbs(n.unit = 3, n.gibbs = 10, n.sample = 10,

weight.matrix,

4

treat.matrix = 0.5*diag(3), cov.matrix= (-0.3)*diag(3))

inputY = simobs$inputY

inputA = simobs$inputA

inputC = simobs$inputC

R.matrix = ifelse(weight.matrix==0, 0, 1)

diag(R.matrix) = 0

result = chain.causal.multi(targetoutcome = "mean", treatment = c(1,0,0),

inputY, inputA, listC = inputC, R.matrix = R.matrix, E.matrix = diag(3),

edgeinfo = list(rbind(c("Y", 1), c("C", 1)), rbind(c("Y", 2), c("C", 2)),

rbind(c("Y", 3), c("C", 3))), n.obs = 1000, n.burn = 100)

print(result)

#> $causalprob

#> [1] 0.5854467

#>

#> $n.par

#> [1] 11

#>

#> $par.est

#> [1] 2.5175370 -0.2081631 -0.4115525 1.4919613 0.5595840 0.1569165

#> [7] 1.4209752 1.4663121 -3.1785419 -1.1046469 -0.8115134

From the results above, when a = (1, 0, 0), E[Ȳ (a)] is around 0.59.

Approximate DAG process

Using sim function provided in R package simcausal, we can generate simulated data following specified
DAG (e.g. lDAG from Figure 1). From the above example where we define DAG object of lDAG, we generate
sample.size = 1000 observations to examine the performance of chain.causal.multi function to infer
counterfactual outcomes ({Y1(a), Y2(a), Y3(a)}) under specific treatment assignment of a = (1, 0, 1). Using
set.targetE and eval.target functions from simcausal, we can derive (approximate) counterfactual
outcomes under a = (1, 0, 1) by generating 10000 counterfactual outcomes.

sample.size <- 1000

simcausaldat <- sim(DAG = lDAG, n = sample.size, rndseed = 1234)

#> simulating observed dataset from the DAG object

treatments <- c(1, 0, 1) # treatment assignment

act_theta <- c(node("A1", t = 0, distr = "rbern", prob = alpha),

node("A2", t = 0, distr = "rbern", prob = beta),

node("A3", t = 0, distr = "rbern", prob = gamma))

lDAG <- lDAG + action("all_theta101", nodes = act_theta,

alpha = treatments[1], beta = treatments[2], gamma = treatments[3])

Y1_treat101 <- set.targetE(DAG = lDAG, outcome = "Y1", t = t.end,

param = "all_theta101")

Y2_treat101 <- set.targetE(DAG = lDAG, outcome = "Y2", t = t.end,

param = "all_theta101")

Y3_treat101 <- set.targetE(DAG = lDAG, outcome = "Y3", t = t.end,

param = "all_theta101")

results1 <- eval.target(Y1_treat101, n = 10000, verbose = FALSE)$res

results2 <- eval.target(Y2_treat101, n = 10000, verbose = FALSE)$res

5

results3 <- eval.target(Y3_treat101, n = 10000, verbose = FALSE)$res

print(c(results1, results2, results3))

#> Mean_Y1_20 Mean_Y2_20 Mean_Y3_20

#> 0.8954 0.5394 0.3164

Those numbers above illustrate the (approximate) true counterfactual outcomes {Y1(a), Y2(a), Y3(a)} under
a = (1, 0, 1). From the below, we illustrate how chain.causal.multi esimates individual counterfactual out-
comes as well as collective counterfactual outcomes when outcomes at the final stage ({Y t=20

1
, Y t=20

2
, Y t=20

3
})

are only available among time-evolving outcomes. Inference on single counterfactual outcome can be easily
done by specifying targetoutcome as a matrix of which rows contain all possible combinations where Y1 = 1.

library(gtools)

dat <- cbind(simcausaldat$A1_0, simcausaldat$A2_0, simcausaldat$A3_0,

simcausaldat$Y1_20, simcausaldat$Y2_20, simcausaldat$Y3_20)

colnames(dat) <- c("A1", "A2", "A3", "Y1", "Y2", "Y3")

dat <- as.data.frame(dat)

R.matrix <- matrix(c(0, 1, 0, 1, 0, 1, 0, 1, 0), 3, 3)

permat <- permutations(2, 3, c(0,1), repeats.allow = T)

marginalY1 <- permat[which(permat[,1] == 1),]

print(marginalY1) ## note that values in the first column (Y1) are all 1.

#> [,1] [,2] [,3]

#> [1,] 1 0 0

#> [2,] 1 0 1

#> [3,] 1 1 0

#> [4,] 1 1 1

result.chain1 <- chain.causal.multi(targetoutcome = marginalY1,

treatment = treatments,

inputY = cbind(dat$Y1, dat$Y2, dat$Y3),

inputA = cbind(dat$A1, dat$A2, dat$A3),

listC = NULL, R.matrix = R.matrix,

E.matrix = diag(3), edgeinfo = NULL,

n.obs = 500, n.burn = 100)$causalprob

print(c(true = results1, estimate = result.chain1))

#> true.Mean_Y1_20 estimate

#> 0.89540 0.90867

Likewise we also estimate Y2(a) and Y3(a) by replacing targetoutcome matrix.

Print out the results of Y_{2}(a) and Y_{3}(a)

print(c(true = results2, estimate = result.chain2))

#> true.Mean_Y2_20 estimate

#> 0.53940 0.51747

print(c(true = results3, estimate = result.chain3))

#> true.Mean_Y3_20 estimate

#> 0.316400 0.349734

We have observed that bias decreases and coverage rate increases as the number of simulated data
(sample.size) increases.

Identifying influential units

A function causal.influence takes the same input as chain.causal.multi except that a specific treatment

is replaced by Avalues that will eventually generate a set of treatment assignments that treat (Avalues =
1) one unit while controlling (Avalues = 0) all the others. In this way, causal.influence evaluates the

6

average of collective outcomes under each treatment assignment E
[

Y(aj)
]

as a measure of influence of unit j,
where aj indicates the sole intervention of unit j, but targetoutcome can be a vector, matrix or an integer
as the case of chain.causal.multi.

set.seed(1234)

edgeinfo = list(rbind(c("Y", 1), c("C", 1)), rbind(c("Y", 2), c("C", 2)),

rbind(c("Y", 3), c("C", 3)))

influence = causal.influence(targetoutcome = "mean", Avalues = c(1,0),

inputY, inputA, listC = inputC, R.matrix, E.matrix = diag(3),

edgeinfo = edgeinfo, n.obs = 1000, n.burn = 100)

print(influence)

#> $influence

#> [1] 0.5924533 0.6999467 0.7095200

#>

#> $n.par

#> [1] 11

#>

#> $par.est

#> [1] 2.5175370 -0.2081631 -0.4115525 1.4919613 0.5595840 0.1569165

#> [7] 1.4209752 1.4663121 -3.1785419 -1.1046469 -0.8115134

The above result says that E
[

Ȳ(a3)
]

≈ 0.71 achieves the highest influence, indicating that among three,
treating unit i = 3 would result highest average potential outcomes.

Reference

Ogburn, E. L., Shpitser, I., & Lee, Y. (2018). Causal inference, social networks, and chain graphs. arXiv

preprint arXiv:1812.04990.

7

	Approximation of Directed Acyclic Graph (DAG)
	Input observations
	Input edge information
	Counterfactual outcomes
	Approximate DAG process

	Identifying influential units
	Reference

