fMRIscrub: Scrubbing and Other Data Cleaning Routines for fMRI

Data-driven fMRI denoising with projection scrubbing (Pham et al (2021) <arXiv:2108.00319>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing and DVARS are also applicable to other outlier detection tasks involving high-dimensional data.

Version: 0.8.6
Depends: R (≥ 3.5.0)
Imports: MASS, e1071, pesel, robustbase, stats, utils, Rcpp
LinkingTo: Rcpp, RcppArmadillo
Suggests: corpcor, cowplot, ciftiTools, knitr, rmarkdown, RNifti, ggplot2, ggpubr, ica, neurobase, oro.nifti, gridExtra, testthat (≥ 2.1.0), covr
Published: 2021-09-20
Author: Amanda Mejia [aut, cre], John Muschelli ORCID iD [aut], Damon Pham ORCID iD [aut], Daniel McDonald [ctb]
Maintainer: Amanda Mejia <mandy.mejia at>
License: GPL-3
NeedsCompilation: yes
Citation: fMRIscrub citation info
Materials: README NEWS
CRAN checks: fMRIscrub results


Reference manual: fMRIscrub.pdf
Vignettes: Projection scrubbing for outlier detection in high-dimensional data with 'fMRIscrub'


Package source: fMRIscrub_0.8.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): fMRIscrub_0.8.6.tgz, r-release (x86_64): fMRIscrub_0.8.6.tgz, r-oldrel: fMRIscrub_0.8.6.tgz
Old sources: fMRIscrub archive

Reverse dependencies:

Reverse imports: templateICAr


Please use the canonical form to link to this page.