Package 'GPBayes' December 3, 2021 Type Package Title Tools for Gaussian Process Modeling in Uncertainty Quantification **Version** 0.1.0-3 Date 2021-12-01 Maintainer Pulong Ma <mpulong@gmail.com> **Description** Gaussian processes (GPs) have been widely used to model spatial data, spatiotemporal data, and computer experiments in diverse areas of statistics including spatial statistics, spatio-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on GPs with spatial data, spatiotemporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the Matérn family and the Confluent Hypergeometric family with isotropic form, tensor form, and automatic relevance determina- tion form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo (MCMC) algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) built-in functionality for simulating GPs with all the implemented covariance functions; (5) unified implementation to allow easy specification of various GPs. **License** GPL (>= 2) **Encoding** UTF-8 BugReports https://github.com/pulongma/GPBayes/issues **Imports** Rcpp (>= 1.0.1), stats, methods **LinkingTo** Rcpp, RcppEigen, RcppProgress **SystemRequirements** GNU Scientific Library version >= 2.5 **NeedsCompilation** yes **Author** Pulong Ma [aut, cre] **Repository** CRAN **Date/Publication** 2021-12-03 05:30:05 UTC 2 GPBayes-package # **R** topics documented: | | GPBayes-package . | | | | | | | | | | | | | | | | | . 2 | |---|-------------------|------|-----|---|--|--|--|---|----|-----|--|--|--|--|--|--|--|------| | | BesselK | | | | | | | | | | | | | | | | | . 5 | | | cauchy | | | | | | | | | | | | | | | | | . 6 | | | СН | | | | | | | | | | | | | | | | | . 7 | | | cor.to.par | | | | | | | | | | | | | | | | | . 8 | | | deriv_kernel | | | | | | | | | | | | | | | | | . 10 | | | distance | | | | | | | | | | | | | | | | | . 12 | | | GaSP | | | | | | | | | | | | | | | | | . 13 | | | gp | | | | | | | | | | | | | | | | | . 17 | | | gp-class | | | | | | | | | | | | | | | | | . 20 | | | gp.fisher | | | | | | | | | | | | | | | | | . 23 | | | gp.get.mcmc | | | | | | | | | | | | | | | | | . 26 | | | gp.mcmc | | | | | | | | | | | | | | | | | . 27 | | | gp.model.adequacy | | | | | | | | | | | | | | | | | . 29 | | | gp.optim | | | | | | | | | | | | | | | | | . 31 | | | gp.predict | | | | | | | | | | | | | | | | | . 32 | | | gp.sim | | | | | | | | | | | | | | | | | . 34 | | | HypergU | | | | | | | | | | | | | | | | | . 37 | | | ikernel | | | | | | | | | | | | | | | | | . 38 | | | kernel | | | | | | | | | | | | | | | | | . 40 | | | loglik | | | | | | | | | | | | | | | | | . 42 | | | matern | | | | | | | | | | | | | | | | | 45 | | | powexp | | | | | | | | | | | | | | | | | 46 | | | show,gp-method | | | | | | | | | | | | | | | | | . 47 | Index | | | | | | | | | | | | | | | | | | 48 | | GPBayes-package Tools for Gaussian Stochastic Process Modeling in Uncertainty Q tification | | | | | | | | Q | иа | ın- | | | | | | | | | | | | щиса | uor | ι | | | | | | | | | | | | | | | # Description Gaussian processes (GPs) have been widely used to model spatial data, spatio-temporal data, and computer experiments in diverse areas of statistics including spatial statistics, spatio-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on GPs with spatial data, spatio-temporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the Matérn family and the Confluent Hypergeometric family with isotropic form, tensor form, and automatic relevance determination form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo (MCMC) algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) GPBayes-package 3 built-in functionality for simulating GPs with all the implemented covariance functions; (5) unified implementation to allow easy specification of various GPs. #### **Details** - Data types: For many scientific applications, spatial data, spatio-temporal data, and computer experiments arise naturally. This package provides a comprehensive set of basic tools to fit GaSP models for univariate and multivariate spatial data, spatio-temporal data, computer experiments. Various covariance functions have been implemented including the Confluent Hypergeometric covariance functions, the Matérn covariance functions, the Gaussian covariance function, the generalized Cauchy covariance function. These covariance families can be in isotropic form, in tensor form, or in automatic relevance determination form. The routines kernel and ikernel contain the details of implementation. - Model simulation: This package can simulate realizations from GaSP for different types of data including spatial data, spatio-temporal data, and computer experiments. This feature is quite useful in part because benchmarks are used to evaluate the performance of GaSP models. This functionality is implemented in the routine gp.sim. - Model fitting: Both maximum likelihood methods (or its variants) and Bayes estimation methods such as maximum a posterior (MAP) and Markov chain Monte Carlo (MCMC) methods are implemented. In this package, the nugget parameter is included in the model by default for the sake of better prediction performance and stable computation in practice. In addition, the smoothness parameter in covariance functions such as the Matérn class and the Confluent Hypergeometric class can be estimated. The routine gp.optim provides optimization based estimation approaches and the routine gp.mcmc provides MCMC algorithms based estimation approaches. - Model prediction: Prediction is made based on the parameter estimation procedure. If maximum likelihood estimation (MLE) methods are used for parameter estimation, the plug-in approach is used for prediction in the sense that MLEs of parameters are plugged into posterior predictive distributions. If partial Bayes methods (e.g., maximum a posterior) are used, the plug-in approach is used for prediction as well. If fully Bayes methods via MCMC algorithms are used, posterior samples are drawn from posterior predictive distributions. The routine gp.mcmc allows prediction to be made within the MCMC algorithms, while the routine gp.predict generates prediction with estimated parameters. - Model assessment: Tools for assessing model adequacy are included in a Bayesian context. Deviance information criteria (DIC), log pointwise predictive density, and log joint predictive density can be computed via the routine gp.model.adequacy. #### Author(s) Pulong Ma <mpulong@gmail.com> ## References - Cressie, N. (1993). "Statistics for Spatial Data." John Wiley & Sons, New York, revised edition. - Ma and Bhadra (2019). "Beyond Matérn: On a Class of Interpretable Confluent Hypergeometric Covariance Functions." arXiv: 1911.05865. https://arxiv.org/abs/1911.05865. 4 GPBayes-package • Sacks, Jerome, William J Welch, Toby J Mitchell, and Henry P Wynn. (1989). "Design and Analysis of Computer Experiments." *Statistical Science* **4**(4). Institute of Mathematical Statistics: 409–435. - Santner, Thomas J., Brian J. Williams, and William I. Notz. (2018). "The Design and Analysis of Computer Experiments"; 2nd Ed. New York: Springer. - Stein, Michael L. (1999). "Interpolation of Spatial Data." Springer Science & Business Media, New York. #### See Also **GaSP** #### **Examples** ``` ############# Examples for fitting univariate GP models ########## ## Set up the Sine example from the tgp package code = function(x){} y = (\sin(pi*x/5) + 0.2*\cos(4*pi*x/5))*(x <= 9.6) + (x/10-1)*(x > 9.6) } n=100 input = seq(0, 20, length=n) XX = seq(0, 20, length=99) Ztrue = code(input) set.seed(1234) output = Ztrue + rnorm(length(Ztrue), sd=0.1) df.data = data.frame(x=c(input), y=output, y.true=Ztrue) ## fitting a GaSP model with the Cauchy prior fit = GaSP(formula=~1, output, input, param=list(range=3, nugget=0.1, nu=2.5), smooth.est=FALSE, input.new=XX, cov.model=list(family="matern", form="isotropic"), proposal=list(range=.35, nugget=.8, nu=0.8), dtype="Euclidean", model.fit="Cauchy_prior", nsample=3000, burnin=500, verbose=TRUE) ## fitting a GaSP model with the beta prior fit = GaSP(formula=~1, output, input, param=list(range=3, nugget=0.1, nu=2.5), smooth.est=FALSE, input.new=XX, cov.model=list(family="matern", form="isotropic"), prior=list(range=list(a=1,b=1,lb=0,ub=20), nugget=list(a=1,b=1,lb=0,ub=var(output)), proposal=list(range=.35, nugget=.8, nu=0.8), dtype="Euclidean", model.fit="Beta_prior", nsample=3000, burnin=500, verbose=TRUE)) ``` BesselK 5 BesselK Modified Bessel function of the second kind # Description This function calls the GSL
scientific library to evaluate the modified Bessel function of the second kind. ## Usage ``` BesselK(nu, z) ``` # **Arguments** nu a real positive value z a real positive value ## Value a numerical value # Author(s) Pulong Ma <mpulong@gmail.com> ## See Also matern 6 cauchy cauchy The generalized Cauchy correlation function # Description This function computes the generalized Cauchy correlation function given a distance matrix. The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter. The case where $\nu=2$ corresponds to the Cauchy covariance model, which is infinitely differentiable. # Usage ``` cauchy(d, range, tail, nu) ``` ## **Arguments** d a matrix of distances range a numerical value containing the range parameter tail a numerical value containing the tail decay parameter nu a numerical value containing the smoothness parameter # Value a numerical matrix # Author(s) Pulong Ma <mpulong@gmail.com> ## See Also kernel CH 7 CH The Confluent Hypergeometric correlation function proposed by Ma and Bhadra (2019) # Description This function computes the Confluent Hypergeometric correlation function given a distance matrix. The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. ## Usage ``` CH(d, range, tail, nu) ``` # **Arguments** d a matrix of distances range a numerical value containing the range parameter tail a numerical value containing the tail decay parameter nu a numerical value containing the smoothness parameter ## Value a numerical matrix #### Author(s) Pulong Ma <mpulong@gmail.com> # See Also GPBayes-package, GaSP, gp, matern, kernel, ikernel 8 cor.to.par cor.to.par Find the correlation parameter given effective range #### **Description** This function finds the correlation parameter given effective range ## Usage ``` cor.to.par(d, param, family = "CH", cor.target = 0.05, lower = NULL, upper = NULL, tol = .Machine$double.eps) ``` #### **Arguments** d a numerical value containing the effective range param a list containing correlation parameters. The specification of **param** should depend on the covariance model. If the parameter value is NULL, this function will find its value given the effective range via root-finding function uniroot. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the generalized Cauchy class, **range** is used to denote the range parameter ϕ . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu=0.5$, the Matérn class corresponds to the exponential covariance. - For the powered-exponential class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu=2$, the powered-exponential class corresponds to the Gaussian covariance. family a string indicating the type of covariance structure. The following correlation functions are implemented: **CH** The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the cor.to.par 9 second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . exp The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with $\nu=0.5$. matern_3_2 The Matérn correlation with $\nu = 1.5$. **matern_5_2** The Matérn correlation with $\nu = 2.5$. cor.target a numerical value. The default value is 0.05, which means that correlation parameters are searched such that the correlation is approximately 0.05. lower a numerical value. This sets the lower bound to find the correlation parameter via the R function uniroot. upper a numerical value. This sets the upper bound to find the correlation parameter via the R function uniroot. tol a numerical value. This sets the precision of the solution with default value specified as the machine precision . Machine\$double.eps in R. #### Value a numerical value of correlation parameters #### Author(s) Pulong Ma <mpulong@gmail.com> ## See Also GPBayes-package, GaSP, kernel, ikernel ## **Examples** ``` range = cor.to.par(1,param=list(tail=0.5,nu=2.5), family="CH") tail = cor.to.par(1,param=list(range=0.5,nu=2.5), family="CH") range = cor.to.par(1,param=list(nu=2.5),family="matern") ``` 10 deriv_kernel deriv_kernel A wraper to construct the derivative of correlation matrix with respect to correlation parameters ## **Description** This function wraps existing built-in routines to construct the derivative of correlation matrix with respect to correlation parameters. ## Usage ``` deriv_kernel(d, range, tail, nu, covmodel) ``` ## **Arguments** d a matrix or a list of distances returned from distance. range a vector of range parameters tail a vector of tail decay parameters nu a vector of smoothness parameters covmode1 a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{ 1 + \left(\frac{h}{\phi}\right)^{\nu} \right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . deriv_kernel 11 **exp** This is the Matérn correlation with $\nu=0.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=0.5$. **matern_3_2** This is the Matérn correlation with $\nu=1.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=1.5$. **matern_5_2** This is the Matérn correlation with $\nu=2.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=2.5$. **powexp** The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. **tensor** This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. #### Value a list of matrices ## Author(s) Pulong Ma <mpulong@gmail.com> 12 distance ## See Also ``` CH, matern, kernel, GPBayes-package, GaSP ``` ## **Examples** distance Compute distances for two sets of inputs
Description This function computes distances for two sets of inputs and returns a R object. #### Usage ``` distance(input1, input2, type = "isotropic", dtype = "Euclidean") ``` ## **Arguments** input1 a matrix of inputs input2 a matrix of inputs type a string indicating the form of distances with three froms supported currently: isotropic, tensor, ARD. dtype a string indicating distance type: Euclidean, GCD, where the latter indicates great circle distance. #### Value a R object holding distances for two sets of inputs. If **type** is **isotropic**, a matrix of distances is returned; if **type** is **tensor** or **ARD**, a list of distance matrices along each input dimension is returned. a numeric vector or matrix of distances ## Author(s) ``` Pulong Ma <mpulong@gmail.com> ``` # **Examples** ``` input = seq(0,1,length=20) d = distance(input, input, type="isotropic", dtype="Euclidean") ``` GaSP 13 GaSP Building, fitting, predicting for a GaSP model # **Description** This function serves as a wrapper to build, fit, and make prediction for a Gaussian process model. It calls on functions gp, gp.mcmc, gp.optim, gp.predict. ## Usage ``` GaSP(formula = \sim 1, output, input, param, smooth.est = FALSE, input.new = NULL, cov.model = list(family = "CH", form = "isotropic"), model.fit = "Cauchy_prior", prior = list(), proposal = list(range = 0.35, tail = 2, nugget = 0.8, nu = 0.8), nsample = 5000, burnin = 1000, opt = NULL, bound = NULL, dtype = "Euclidean", verbose = TRUE) ``` ## **Arguments** formula an object of formula class that specifies regressors; see formula for details. output a numerical vector including observations or outputs in a GaSP input a matrix including inputs in a GaSP param a list including values for regression parameters, covariance parameters, and nugget variance parameter. The specification of **param** should depend on the covariance model. - The regression parameters are denoted by **coeff**. Default value is **0**. - The marginal variance or partial sill is denoted by sig2. Default value is 1. - The nugget variance parameter is denoted by **nugget** for all covariance models. Default value is 0. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . 14 GaSP > • For the generalized Cauchy class, range is used to denote the range parameter ϕ . tail is used to denote the tail decay parameter α . nu is used to denote the smoothness parameter ν . - For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu = 0.5$, the Matérn class corresponds to the exponential covariance. - For the powered-exponential class, range is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu = 2$, the powered-exponential class corresponds to the Gaussian covariance. input.new cov.model a logical value indicating whether smoothness parameter will be estimated. a matrix of new input locations a list of two strings: family, form, where family indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. **cauchy** The generalized Cauchy covariance is given by $$C(h) = \left\{ 1 + \left(\frac{h}{\phi}\right)^{\nu} \right\}^{-\alpha/\nu},\,$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with **matern_3_2** The Matérn correlation with $\nu = 1.5$. **matern_5_2** The Matérn correlation with $\nu = 2.5$. smooth.est model.fit **powexp** The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},$$ where ϕ is the range parameter. ν is the smoothness parameter. **gauss** The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. a string indicating the choice of priors on correlation parameters: **Cauchy_prior** This indicates that a fully Bayesian approach with objective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with half-Cauchy priors (default). **Ref_prior** This indicates that a fully Bayesian approach with objective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with reference priors. This is only supported for isotropic covariance functions. For details, see gp.mcmc. **Beta_prior** This indicates that a fully Bayesian approach with subjective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with beta priors parameterized as Beta(a,b,lb,ub). In the beta distribution, **lb** and **ub** are the support for correlation parameters, and they should be determined based on domain knowledge. **a** and **b** are two shape parameters with default values at 1, corresponding to the uniform prior over the support (lb,ub). 16 GaSP > **MPLE** This indicates that the maximum profile likelihood estimation (**MPLE**) is used. MMLE This indicates that the maximum marginal likelihood estimation (MMLE) is used. **MAP** This indicates that the marginal/integrated posterior is maximized. a list containing tuning parameters in prior distribution. This is used only if a subjective Bayes estimation method with informative priors is used. proposal a list containing tuning parameters in proposal distribution. This is used only if a Bayes estimation method is used. nsample an integer indicating the number of MCMC samples. burnin an integer indicating the burn-in period. opt a list of arguments to setup the optim routine. Current implementation uses three arguments: method The optimization method: Nelder-Mead or L-BFGS-B. lower The lower bound for parameters. **upper** The upper bound for parameters. bound Default value is NULL. Otherwise, it should be a list containing the following elements depending on the covariance class: nugget a list of bounds for the nugget parameter. It is a list containing lower bound **lb** and upper bound **ub** with default value list(lb=0, ub=Inf). range a list of bounds for the range parameter. It has default value range=list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance, the Matérn covariance, exponential covariance, Gaussian covariance, powered-exponential covariance, and Cauchy covariance. The log of range parameterization is used: $\log(\phi)$. tail a list of bounds for the tail decay parameter. It has default value list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance and the Cauchy covariance. **nu** a list of bounds for the smoothness parameter. It has default value list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance and the Matérn covariance. when the powered-exponential or Cauchy class is used, it has default value **nu**=list(lb=0, ub=2). This can be achieved by specifying the **lower** bound in opt. a string indicating the type of distance: dtype Euclidean Euclidean distance is used. This is the default choice. **GCD** Great circle distance is used for data on sphere. verbose a logical value. If it is TRUE, the MCMC progress bar is shown. #### Value prior a list containing the S4 object gp and prediction results ## Author(s) Pulong Ma <mpulong@gmail.com> gp 17 ## See Also ``` GPBayes-package, gp, gp.mcmc, gp.optim, gp.predict ``` ## **Examples** ``` code = function(x){ y = (\sin(pi*x/5) + 0.2*\cos(4*pi*x/5))*(x \le 9.6) + (x/10-1)*(x \ge 9.6) return(y) } n=100 input = seq(0, 20, length=n) XX =
seq(0, 20, length=99) Ztrue = code(input) set.seed(1234) output = Ztrue + rnorm(length(Ztrue), sd=0.1) # fitting a GaSP model with the objective Bayes approach fit = GaSP(formula=~1, output, input, param=list(range=3, nugget=0.1, nu=2.5), smooth.est=FALSE, input.new=XX, cov.model=list(family="matern", form="isotropic"), proposal=list(range=.35, nugget=.8, nu=0.8), dtype="Euclidean", model.fit="Cauchy_prior", nsample=50, burnin=10, verbose=TRUE) ``` Construct the S4 object gp gp ## **Description** This function constructs the S4 object gp that is used for Gaussian process model fitting and prediction. # Usage ``` gp(formula = ~1, output, input, param, smooth.est = FALSE, cov.model = list(family = "CH", form = "isotropic"), dtype = "Euclidean") ``` #### **Arguments** formula an object of formula class that specifies regressors; see formula for details. output a numerical vector including observations or outputs in a GaSP input a matrix including inputs in a GaSP param a list including values for regression parameters, covariance parameters, and nugget variance parameter. The specification of **param** should depend on the covariance model. - The regression parameters are denoted by **coeff**. Default value is **0**. - The marginal variance or partial sill is denoted by sig2. Default value is 1. - The nugget variance parameter is denoted by nugget for all covariance models. Default value is 0. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the generalized Cauchy class, **range** is used to denote the range parameter ϕ . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu=0.5$, the Matérn class corresponds to the exponential covariance. - For the powered-exponential class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu=2$, the powered-exponential class corresponds to the Gaussian covariance. smooth.est cov.model a logical value indicating whether smoothness parameter will be estimated. a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. **cauchy** The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . exp The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with $\nu=0.5.$ **matern_3_2** The Matérn correlation with $\nu = 1.5$. matern_5_2 The Matérn correlation with $\nu = 2.5$. **powexp** The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},\,$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. a string indicating the type of distance: Euclidean Euclidean distance is used. This is the default choice. GCD Great circle distance is used for data on sphere. dtype 20 gp-class ## Value ``` an S4 object of gp class ``` ## Author(s) Pulong Ma <mpulong@gmail.com> #### See Also GPBayes-package, GaSP #### **Examples** gp-class The gp class ## **Description** This is an S4 class definition for gp in the GaSP package. ## **Slots** formula an object of formula class that specifies regressors; see formula for details. output a numerical vector including observations or outputs in a GaSP input a matrix including inputs in a GaSP param a list including values for regression parameters, correlation parameters, and nugget variance parameter. The specification of **param** should depend on the covariance model. - The regression parameters are denoted by **coeff**. Default value is **0**. - The marginal variance or partial sill is denoted by sig2. Default value is 1. The nugget variance parameter is denoted by nugget for all covariance models. Default value is 0. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the generalized Cauchy class, **range** is used to denote the range parameter ϕ . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu=0.5$, the Matérn class corresponds to the exponential covariance. - For the powered-exponential class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu=2$, the powered-exponential class corresponds to the Gaussian covariance. cov.model a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with $\nu=0.5$. matern_3_2 The Matérn correlation with $\nu = 1.5$. **matern_5_2** The Matérn correlation with $\nu = 2.5$. powexp The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. form isotropic This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the
distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. smooth.est a logical value. If it is TRUE, the smoothness parameter will be estimated; otherwise the smoothness is not estimated. dtype a string indicating the type of distance: Euclidean Euclidean distance is used. This is the default choice. **GCD** Great circle distance is used for data on sphere. loglik a numerical value containing the log-likelihood with current gp object. mcmc a list containing MCMC samples if available. prior a list containing tuning parameters in prior distribution. This is used only if a Bayes estimation method with informative priors is used. proposal a list containing tuning parameters in proposal distribution. This is used only if a Bayes estimation method is used. info a list containing the maximum distance in the input space. It should be a vector if **isotropic** covariance is used, otherwise it is vector of maximum distances along each input dimension gp.fisher 23 #### Author(s) Pulong Ma <mpulong@gmail.com> #### See Also GPBayes-package, GaSP gp.fisher Fisher information matrix # **Description** This function computes the Fisher information matrix $I(\sigma^2, \theta)$ for a Gaussian process model. The standard likelihood is defined as $$L(\sigma^2, \boldsymbol{\theta}; \mathbf{y}) = \mathcal{N}_n(\mathbf{Hb}, \sigma^2 \mathbf{R}),$$ where $\mathbf{y} := (y(\mathbf{x}_1), \dots, y(\mathbf{x}_n))^{\top}$ is a vector of n observations. \mathbf{H} is a matrix of covariates, \mathbf{b} is a vector of regression coefficients, σ^2 is the variance parameter, $\boldsymbol{\theta}$ contains correlation parameters and nugget parameter, \mathbf{R} denotes the correlation matrix plus nugget variance on the main diagonal. The integrated likelihood is defined as $$L^{I}(\sigma^{2}, \boldsymbol{\theta}; \mathbf{y}) = \int L(\mathbf{b}, \sigma^{2}, \boldsymbol{\theta}; \mathbf{y}) \pi^{R}(\mathbf{b} \mid \sigma^{2}, \boldsymbol{\theta}) d\mathbf{b},$$ where $\pi^R(\mathbf{b} \mid \sigma^2, \boldsymbol{\theta}) = 1$ is the conditional Jeffreys-rule (or reference prior) in the model with the above standard likelihood when $(\sigma^2, \boldsymbol{\theta})$ is assumed to be known. - For the Matérn class, current implementation only computes Fisher information matrix for variance parameter σ^2 , range parameter ϕ , and nugget variance parameter τ^2 . That is, $I(\sigma^2, \theta) = I(\sigma^2, \phi, \tau^2)$. - For the Confluent Hypergeometric class, current implementation computes Fisher information matrix for variance parameter σ^2 , range parameter β , tail decay parameter α , smoothness parameter ν and nugget variance parameter τ^2 . That is, $I(\sigma^2, \theta) = I(\sigma^2, \beta, \alpha, \nu, \tau^2)$. ## Usage ``` gp.fisher(obj = NULL, intloglik = FALSE, formula = ~1, input = NULL, param = NULL, cov.model = NULL, dtype = "Euclidean") ``` 24 gp.fisher #### **Arguments** obj a gp object. It is optional with default value NULL. intloglik a logical value with default value FALSE. If it is FALSE, Fisher information matrix $I(\sigma^2, \theta)$ is derived based on the standard likelihood; otherwise, Fisher information matrix $I(\sigma^2, \theta)$ is derived based on the integrated likelihood. formula an object of formula class that specifies regressors; see formula for details. a matrix including inputs in a GaSP input param a list including values for regression parameters, covariance parameters, and nugget variance parameter. The specification of **param** should depend on the covariance model. - The regression parameters are denoted by **coeff**. Default value is **0**. - The marginal variance or partial sill is denoted by sig2. Default value is 1. - The nugget variance parameter is denoted by **nugget** for all covariance models. Default value is 0. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the generalized Cauchy class, **range** is used to denote the range parameter ϕ . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu=0.5$, the Matérn class corresponds to the exponential covariance. - For the powered-exponential class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu=2$, the powered-exponential class corresponds to the Gaussian covariance. cov.model a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ 25 where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with $\nu=0.5.$ **matern_3_2** The Matérn correlation with $\nu = 1.5$. **matern_5_2** The Matérn correlation with $\nu = 2.5$. powexp The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},\,$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. ARD This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. a string indicating the type of distance: Euclidean Euclidean distance is used. This is the default choice. GCD Great circle distance is used for data on sphere. dtype 26 gp.get.mcmc # Value a numerical matrix of Fisher information ## Author(s) ``` Pulong Ma <mpulong@gmail.com> ``` ## See Also ``` GPBayes-package, GaSP, gp, kernel, ikernel, ``` # **Examples** gp.get.mcmc get posterior summary for MCMC samples # Description This function processes posterior samples in the gp object. #### **Usage** ``` gp.get.mcmc(obj, burnin = 500) ``` # **Arguments** obj a gp object burnin a numerical value specifying the burn-in period for calculating posterior sum- maries. ## Value a list of posterior summaries gp.mcmc 27 #### See Also GPBayes-package, GaSP, gp, gp. mcmc gp.mcmc A wraper to fit a Gaussian stochastic process model with MCMC algorithms # **Description** This function is a wraper to estimate parameters via MCMC algorithms in the GaSP model with different choices of priors. ## Usage ``` gp.mcmc(obj, input.new = NULL, method = "Cauchy_prior", prior = list(), proposal = list(), nsample = 10000, verbose = TRUE) ``` # **Arguments** obj an S4 object gp input.new a matrix of prediction locations. Default value is NULL, indicating that prediction is not carried out along with parameter estimation in the MCMC algorithm. method a string indicating the Bayes estimation approaches with different choices of priors on correlation parameters: Cauchy_prior This indicates that a fully Bayesian approach with objective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with half-Cauchy priors (default). If the smoothness parameter is estimated for isotropic covariance functions, the smoothness parameter is assigned with a uniform prior on (0, 4), indicating that
the corresponding GP is at most four times mean-square differentiable. This is a reasonable prior belief for modeling spatial processes; If the smoothness parameter is estimated for tensor or ARD covariance functions, the smoothness parameter is assigned with a uniform prior on (0, 6). **Ref_prior** This indicates that a fully Bayesian approach with objective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with reference priors. If the smoothness parameter is estimated for isotropic 28 gp.mcmc covariance functions, the smoothness parameter is assigned with a uniform prior on (0, 4), indicating that the corresponding GP is at most four times mean-square differentiable. This is a reasonable prior belief for modeling spatial processes; If the smoothness parameter is estimated for tensor or ARD covariance functions, the smoothness parameter is assigned with a uniform prior on (0, 6). **Beta_prior** This indicates that a fully Bayesian approach with subjective priors is used for parameter estimation, where location-scale parameters are assigned with constant priors and correlation parameters are assigned with beta priors parameterized as Beta(a,b,lb,ub). In the beta distribution, **lb** and **ub** are the support for correlation parameters, and they should be determined based on domain knowledge. **a** and **b** are two shape parameters with default values at 1, corresponding to the uniform prior over the support (lb,ub). prior a list containing tuning parameters in prior distributions. This is used only if a Bayes estimation method with subjective priors is used. proposal a list containing tuning parameters in proposal distributions. This is used only if a Bayes estimation method is used. nsample an integer indicating the number of MCMC samples. verbose a logical value. If it is TRUE, the MCMC progress bar is shown. #### Value a gp object with prior, proposal, MCMC samples included. ## Author(s) Pulong Ma <mpulong@gmail.com> #### See Also ``` GPBayes-package, GaSP, gp, gp.optim ``` ## **Examples** gp.model.adequacy 29 gp.model.adequacy Model assessment based on Deviance information criterion (DIC), logarithmic pointwise predictive density (lppd), and logarithmic joint predictive density (ljpd). ## **Description** This function computes effective number of parameters (pD), deviance information criterion (DIC), logarithmic pointwise predictive density (lppd), and logarithmic joint predictive density (ljpd). For detailed introduction of these metrics, see Chapter 7 of Gelman et al. (2013). The deviance function for a model with a vector of parameters θ is defined as $$D(\boldsymbol{\theta}) = -2\log p(\mathbf{y} \mid \boldsymbol{\theta}),$$ where $\mathbf{y} := (y(\mathbf{x}_1), \dots, y(\mathbf{x}_n))^{\top}$ is a vector of n observations. • The effective number of parameters (see p.172 of Gelman et al. 2013) is defined as $$pD = E_{\theta|\mathbf{y}}[D(\theta)] - D(\hat{\theta}),$$ where $\hat{\theta} = E_{\theta|y}[\theta]$. The interpretation is that the effective number of parameters is the "expected" deviance minus the "fitted" deviance. Higher pD implies more over-fitting with estimate $\hat{\theta}$. • The Deviance information criteria (DIC) (see pp. 172-173 of Gelman et al. 2013) is $$DIC = E_{\theta|\mathbf{y}}[D(\theta)] + pD.$$ DIC approximates Akaike information criterion (AIC) and is more appropriate for hierarchical models than AIC and BIC. • The log predictive density (lpd) is defined as $$p(y(\mathbf{x}_0) \mid \mathbf{y}) = \int p(y(\mathbf{x}_0) \mid \boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta} \mid \mathbf{y}) d\boldsymbol{\theta},$$ where $\mathbf{y} := (y(\mathbf{x}_1), \dots, y(\mathbf{x}_n))^{\top}$ is a vector of n observations. $\boldsymbol{\theta}$ contains correlation parameters and nugget parameter. This predictive density should be understood as an update of the likelihood since data is treated as prior information now. With a set of prediction locations $\mathcal{X} := \{x_0^i : i = 1, \dots, m\}$. The log pointwise predictive density (**lppd**) is defined as $$lppd = \sum_{i=1}^{m} \log p(y(\mathbf{x}_0^i) \mid \mathbf{y}).$$ 30 gp.model.adequacy The log joint predictive density (ljpd) is defined as $$ljpd = \log p(y(\mathcal{X})).$$ The 1ppd is connected to cross-validation, while the 1jpd measures joint uncertainty across prediction locations. # Usage ``` gp.model.adequacy(obj, testing.input, testing.output, pointwise = TRUE, joint = TRUE) ``` # **Arguments** ``` obj a gp object. testing.input a matrix of testing inputs testing.output a vector of testing outputs pointwise a logical value with default value TRUE. If it is TRUE, lppd is calculated. a logical value with default value TRUE. If it is TRUE, ljpd is calculated. ``` ## Value ``` a list containingg pD, DIC, lppd, ljpd. ``` ## Author(s) Pulong Ma <mpulong@gmail.com> #### References • Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin (2013). Bayesian Data Analysis, Third Edition. CRC Press. # See Also ``` GPBayes-package, GaSP, gp, ``` 31 gp.optim | gp.optim | A wraper to fit a Gaussian stochastic process model with optimization | |----------|---| | | methods | #### **Description** This function is a wraper to estimate parameters in the GaSP model with different choices of estimation methods using numerical optimization methods. # Usage ``` gp.optim(obj, method = "MMLE", opt = NULL, bound = NULL) ``` ## **Arguments** obj an S4 object gp method a string indicating the parameter estimation method: > **MPLE** This indicates that the *maximum profile likelihood estimation* (**MPLE**) is used. MMLE This indicates that the maximum marginal likelihood estimation (MMLE) **MAP** This indicates that the marginal/integrated posterior is maximized. a list of arguments to setup the optim routine. Current implementation uses three arguments: method The optimization method: Nelder-Mead or L-BFGS-B. **lower** The lower bound for parameters. **upper** The upper bound for parameters. Default value is NULL. Otherwise, it should be a list containing the following elements depending on the covariance class: nugget a list of bounds for the nugget parameter. It is a list containing lower bound **lb** and upper bound **ub** with default value list(lb=0, ub=Inf). range a list of bounds for the range parameter. Tt has default value range=list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance, the Matérn covariance, exponential covariance, Gaussian covariance, powered-exponential covariance, and Cauchy covariance. The log of range parameterization is used: $\log(\phi)$. tail a list of bounds for the tail decay parameter. It has default value list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance and the Cauchy covariance. **nu** a list of bounds for the smoothness parameter. It has default value list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance and the Matérn covariance. when the powered-exponential or Cauchy class is used, it has default value nu=list(lb=0, ub=2). This can be achived by specifying the lower bound in opt. opt bound 32 gp.predict # Value a list of updated gp object obj and fitted information fit ## Author(s) ``` Pulong Ma <mpulong@gmail.com> ``` ## See Also ``` GPBayes-package, GaSP, gp, gp.mcmc ``` # **Examples** gp.predict Prediction at new inputs based on a Gaussian stochastic process model # Description This function provides the capability to make prediction based on a GaSP when different estimation methods are employed. #### **Usage** ``` gp.predict(obj, input.new, method = "Bayes") ``` gp.predict 33 ## Arguments obj an S4 object gp input.new a matrix of new input lomessageions method a string indicating the parameter estimation method: **MPLE** This indicates that the *maximum profile likelihood estimation* (**MPLE**) is used. This correponds to simple kriging formulas **MMLE** This indicates that the *maximum marginal likelihood estimation* (**MMLE**) is used. This corresponds to universal kriging formulas when the vairance parameter is not integrated out. If the variance parameter is integrated out, the predictive variance differs from the universal kriging variance by the factor $\frac{n-q}{n-q-2}$, since the predictive distribution is a Student's t-distribution with degrees of freedom n-q. **MAP** This indicates that the posterior estimates of model parameters are plugged into the posterior predictive distribution. Thus this approach does not take account into uncertainty in model parameters (**range**, **tail**, **nu**, **nugget**). **Bayes** This indicates that a fully Bayesian approach is used for parameter estimation (and hence prediction). This approach takes into account uncertainty in all model parameters. #### Value a list of predictive mean, predictive standard deviation, 95 ## Author(s) Pulong Ma <mpulong@gmail.com> #### See Also ``` GPBayes-package, GaSP, gp, gp.mcmc, gp.optim ``` # **Examples** gp.sim ``` fit.optim = gp.optim(obj, method="MMLE") obj = fit.optim$obj pred = gp.predict(obj, input.new=XX, method="MMLE") ``` gp.sim Simulate from a Gaussian stochastic process model ## **Description** This function simulates realizations from Gaussian processes. # Usage ``` gp.sim(formula = ~1, input, param, cov.model = list(family = "CH", form = "isotropic"), dtype = "Euclidean", nsample = 1, seed = NULL) ``` ## **Arguments** formula an object of formula class that specifies regressors; see formula for details. input a matrix including inputs in a GaSP param a list including values for regression parameters, covariance parameters, and nugget variance parameter. The specification of **param** should depend on the covariance model. - The regression parameters are denoted by **coeff**. Default value is **0**. - The marginal variance or partial sill is denoted
by sig2. Default value is 1. - The nugget variance parameter is denoted by **nugget** for all covariance models. Default value is 0. - For the Confluent Hypergeometric class, **range** is used to denote the range parameter β . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . - For the generalized Cauchy class, **range** is used to denote the range parameter ϕ . **tail** is used to denote the tail decay parameter α . **nu** is used to denote the smoothness parameter ν . gp.sim • For the Matérn class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter ν . When $\nu = 0.5$, the Matérn class corresponds to the exponential covariance. 35 • For the powered-exponential class, **range** is used to denote the range parameter ϕ . **nu** is used to denote the smoothness parameter. When $\nu=2$, the powered-exponential class corresponds to the Gaussian covariance. cov.model a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{ 1 + \left(\frac{h}{\phi}\right)^{\nu} \right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** The exponential correlation function is given by $$C(h) = \exp(-h/\phi),$$ where ϕ is the range parameter. This is the Matérn correlation with $\nu=0.5$. **matern_3_2** The Matérn correlation with $\nu = 1.5$. matern_5_2 The Matérn correlation with $\nu = 2.5$. powexp The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},\,$$ where ϕ is the range parameter. ν is the smoothness parameter. 36 gp.sim gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. dtype a string indicating the type of distance: Euclidean Euclidean distance is used. This is the default choice. **GCD** Great circle distance is used for data on sphere. nsample an integer indicating the number of realizations from a Gaussian process seed a number specifying random number seed #### Value a numerical vector or a matrix ## Author(s) Pulong Ma <mpulong@gmail.com> #### See Also GPBayes-package, GaSP, gp HypergU 37 ## **Examples** HypergU Confluent hypergeometric function of the second kind ## Description This function calls the GSL scientific library to evaluate the confluent hypergeometric function of the second kind; see Abramowitz and Stegun 1972, p.505. ## Usage ``` HypergU(a, b, x) ``` ## **Arguments** ``` a a real valueb a real valuex a real value ``` ## Value a numerical value ## Author(s) Pulong Ma <mpulong@gmail.com> ## See Also CH 38 ikernel ikernel A wraper to build different kinds of correlation matrices between two sets of inputs #### **Description** This function wraps existing built-in routines to construct a covariance matrix for two input matrices based on data type, covariance type, and distance type. The constructed covariance matrix can be directly used for GaSP fitting and and prediction for spatial data, spatio-temporal data, and computer experiments. This function explicitly takes inputs as arguments. The prefix "i" in ikernel standards for "input". #### Usage ikernel(input1, input2, range, tail, nu, covmodel, dtype = "Euclidean") #### **Arguments** input1 a matrix of input locations input2 a matrix of input locations range a vector of range parameters, which could be a scalar. tail a vector of tail decay parameters, which could be a scalar. nu a vector of smoothness parameters, which could be a scalar. covmodel a list of two strings: **family**, **form**, where **family** indicates the a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^{2}\right),$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},\,$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. ikernel 39 matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . exp This is the Matérn correlation with $\nu=0.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=0.5$. **matern_3_2** This is the Matérn correlation with $\nu=1.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=1.5$ **matern_5_2** This is the Matérn correlation with $\nu=2.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=2.5$. powexp The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. a string indicating distance type: **Euclidean**, **GCD**, where the latter indicates great circle distance. dtype 40 kernel #### Value a correlation matrix #### Author(s) Pulong Ma <mpulong@gmail.com> #### See Also ``` CH, matern, kernel, GPBayes-package, GaSP ``` #### **Examples** kernel A wraper to build different kinds of correlation matrices with distance as arguments #### **Description** This function wraps existing built-in routines to construct a covariance matrix based on data type, covariance type, and distance type with distances as inputs. The constructed covariance matrix can be directly used for GaSP fitting and and prediction for spatial data, spatio-temporal data, and computer experiments. ## Usage ``` kernel(d, range, tail, nu, covmodel) ``` ## Arguments d a matrix or a list of distances range a vector of range parameters, which could be a
scalar. tail a vector of tail decay parameters, which could be a scalar. nu a vector of smoothness parameters, which could be a scalar. covmodel a list of two strings: family, form, where family indicates the family of covari- ance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, auto- matic relevance determination form. kernel 41 family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** This is the Matérn correlation with $\nu=0.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=0.5$. **matern_3_2** This is the Matérn correlation with $\nu=1.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=1.5$. **matern_5_2** This is the Matérn correlation with $\nu=2.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=2.5$. **powexp** The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},\,$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is. $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}).$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. #### Value a correlation matrix ## Author(s) Pulong Ma <mpulong@gmail.com> #### See Also ``` CH, matern, ikernel, GPBayes-package, GaSP ``` #### **Examples** loglik A wraper to compute the natural logarithm of the integrated likelihood function ## **Description** This function wraps existing built-in routines to construct the natural logarithm of the integrated likelihood function. The constructed loglikelihood can be directly used for numerical optimization ## Usage ``` loglik(par, output, H, d, covmodel, smooth, smoothness_est) ``` loglik 43 #### **Arguments** par a numerical vector, with which numerical optimization routine such as optim can be carried out directly. When the confluent Hypergeometric class is used, it is used to hold values for **range**, **tail**, **nugget**, and **nu** if the smoothness parameter is estimated. When the Matérn class or powered-exponential class is used, it is used to hold values for **range**, **nugget**, and **nu** if the smoothness parameter is estimated. The order of the parameter values in par cannot be changed. For tensor or ARD form correlation functions, **range** and **tail** becomes a vector. output a matrix of outputs Н a matrix of regressors in the mean function of a GaSP model. d an R object holding the distances. It should be a distance matrix for constructing isotropic correlation matrix, or a list of distance matrices along each input dimension for constructing tensor or ARD types of correlation matrix. covmodel a list of two strings: **family**, **form**, where **family** indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. **form** indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form. family CH The Confluent Hypergeometric correlation function is given by $$C(h) = \frac{\Gamma(\nu + \alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1 - \nu, \left(\frac{h}{\beta}\right)^2\right),\,$$ where α is the tail decay parameter. β is the range parameter. ν is the smoothness parameter. $\mathcal{U}(\cdot)$ is the confluent hypergeometric function of the second kind. For details about this covariance, see Ma and Bhadra (2019) at https://arxiv.org/abs/1911.05865. cauchy The generalized Cauchy covariance is given by $$C(h) = \left\{1 + \left(\frac{h}{\phi}\right)^{\nu}\right\}^{-\alpha/\nu},\,$$ where ϕ is the range parameter. α is the tail decay parameter. ν is the smoothness parameter with default value at 2. matern The Matérn correlation function is given by $$C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . **exp** This is the Matérn correlation with $\nu=0.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=0.5$. **matern_3_2** This is the Matérn correlation with $\nu=1.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=1.5$. 44 loglik **matern_5_2** This is the Matérn correlation with $\nu=2.5$. This covariance should be specified as **matern** with smoothness parameter $\nu=2.5$. powexp The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},\,$$ where ϕ is the range parameter. ν is the smoothness parameter. gauss The Gaussian correlation function is given by $$C(h) = \exp\left(-\frac{h^2}{\phi^2}\right),\,$$ where ϕ is the range parameter. **form isotropic** This indicates the isotropic form of covariance functions. That is, $$C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol{\theta}),$$ where $\|\mathbf{h}\|$ denotes the Euclidean distance or the great circle distance for data on sphere. $C^0(\cdot)$ denotes any isotropic covariance family specified in **family**. tensor This indicates the tensor product of correlation functions. That is, $$C(\mathbf{h}) = \prod_{i=1}^{d} C^{0}(|h_{i}|; \boldsymbol{\theta}_{i}),$$ where d is the dimension of input space. h_i is the distance along the ith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments. **ARD** This indicates the automatic relevance determination form. That is, $$C(\mathbf{h}) = C^0 \left(\sqrt{\sum_{i=1}^d \frac{h_i^2}{\phi_i^2}}; \boldsymbol{\theta} \right),$$ where ϕ_i denotes the range parameter along the *i*th input dimension. smooth The smoothness parameter ν in a correlation function. smoothness_est a logical value indicating whether the smoothness parameter is estimated. ## Value The natural logarithm of marginal or integrated likelihood #### Author(s) Pulong Ma <mpulong@gmail.com> ## See Also CH, matern, gp. optim, GPBayes-package, GaSP matern 45 matern The Matérn correlation function proposed by Matérn (1960) ## Description This function computes the Matérn correlation function given a distance matrix. The Matérn correlation function is given by $C(h) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi}\right)^{\nu} \mathcal{K}_{\nu} \left(\frac{h}{\phi}\right),\,$ where ϕ is the range parameter. ν is the smoothness parameter. $\mathcal{K}_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν . The form of covariance includes the following special cases by specifying ν to be 0.5, 1.5, 2.5. • $\nu = 0.5$ corresponds to the exponential correlation function (exp) of the form $$C(h) = \exp\left\{-\frac{h}{\phi}\right\}$$ • $\nu=1.5$ corresponds to the Matérn correlation function with smoothness parameter 1.5 (matern_3_2) of the form $$C(h) = \left(1 + \frac{h}{\phi}\right) \exp\left\{-\frac{h}{\phi}\right\}$$ • $\nu=2.5$ corresponds to the Matérn correlation function with smoothness parameter 2.5 (matern_5_2) of the form $$C(h) = \left\{1 + \frac{h}{\phi} + \frac{1}{3} \left(\frac{h}{\phi}\right)^2\right\} \exp\left\{-\frac{h}{\phi}\right\}$$ ## Usage matern(d, range, nu) #### **Arguments** d a matrix of distances range a numerical value containing the range parameter nu a numerical value containing the smoothness parameter #### Value a numerical matrix #### Author(s) Pulong Ma <mpulong@gmail.com> 46 powexp #### See Also GPBayes-package, GaSP, gp, CH, kernel, ikernel powexp The powered-exponential correlation function ## Description This function computes the powered-exponential correlation function
given a distance matrix. The powered-exponential correlation function is given by $$C(h) = \exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},$$ where ϕ is the range parameter. ν is the smoothness parameter. The case $\nu=2$ corresponds to the well-known Gaussian correlation. ## Usage ``` powexp(d, range, nu) ``` ## **Arguments** d a matrix of distances range a numerical value containing the range parameter nu a numerical value containing the smoothness parameter ### Value a numerical matrix ## Author(s) Pulong Ma <mpulong@gmail.com> ## See Also kernel show,gp-method 47 show,gp-method Print the information an object of the $\operatorname{\mathsf{gp}}$ class ## Description Print the information an object of the gp class ## Usage ``` ## S4 method for signature 'gp' show(object) ``` ## Arguments object an object of gp class # **Index** ``` * GaSP optim, 16, 31, 43 gp-class, 20 powexp, 46 * package GPBayes-package, 2 show, gp-method, 47 show, gp-methods (show, gp-method), 47 BesselK, 5 beta, 15, 28 uniroot, 8, 9 cauchy, 6 CH, 7, 12, 37, 40, 42, 44, 46 cor.to.par, 8 deriv_kernel, 10 distance, 10, 12 formula, 13, 18, 20, 24, 34 GaSP, 4, 7, 9, 12, 13, 20, 23, 26–28, 30, 32, 33, 36, 40, 42, 44, 46 gp, 7, 13, 16, 17, 17, 20, 22, 24, 26–28, 30–33, 36, 46, 47 gp-class, 20 gp.fisher, 23 gp.get.mcmc, 26 gp.mcmc, 3, 13, 15, 17, 27, 27, 32, 33 gp.model.adequacy, 3, 29 gp.optim, 3, 13, 17, 28, 31, 33, 44 gp.predict, 3, 13, 17, 32 gp.sim, 3, 34 GPBayes-package, 2, 7, 9, 12, 20, 23, 26–28, 30, 32, 33, 36, 40, 42, 44, 46 HypergU, 37 ikernel, 3, 7, 9, 26, 38, 38, 42, 46 kernel, 3, 6, 7, 9, 12, 26, 40, 40, 46 loglik, 42 matern, 5, 7, 12, 40, 42, 44, 45 ```