ClustAssess: Tools for Assessing Clustering

A set of tools for evaluating clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), as well as similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables stability-based parameter assessment for graph-based clustering pipelines typical in single-cell data analysis.

Version: 0.3.0
Imports: ggplot2, dplyr, fastcluster, rlang, Matrix, igraph, magrittr, Rcpp, methods, stats, foreach, doParallel, irlba, progress, reshape2, stringr, uwot
LinkingTo: Rcpp
Suggests: knitr, rmarkdown, e1071, dbscan, dendextend, Seurat, readr, patchwork
Published: 2022-01-26
Author: Arash Shahsavari [aut, cre], Andi Munteanu [aut], Irina Mohorianu [aut]
Maintainer: Arash Shahsavari <as3006 at cam.ac.uk>
BugReports: https://github.com/Core-Bioinformatics/ClustAssess/issues
License: MIT + file LICENSE
URL: https://github.com/Core-Bioinformatics/ClustAssess
NeedsCompilation: yes
Materials: README
CRAN checks: ClustAssess results

Documentation:

Reference manual: ClustAssess.pdf
Vignettes: Evaluating single-cell clustering with ClustAssess
Comparing soft and hierarchical clusterings with element-centric similarity

Downloads:

Package source: ClustAssess_0.3.0.tar.gz
Windows binaries: r-devel: ClustAssess_0.3.0.zip, r-release: ClustAssess_0.3.0.zip, r-oldrel: ClustAssess_0.1.1.zip
macOS binaries: r-release (arm64): ClustAssess_0.3.0.tgz, r-release (x86_64): ClustAssess_0.3.0.tgz, r-oldrel: ClustAssess_0.3.0.tgz
Old sources: ClustAssess archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ClustAssess to link to this page.