mrgsolve
forest_plot
Here we illustrate the approach with a two-compartment PK model defined with an ordinary differential equation (ODE) and covariates on the PK parameters Clearance (CL) and Volume (V). Weight, Albumin and Sex had effects on CL while Weight and Sex had effects on V. For simplicity no covariates had effects on peripheral clearance or volume. The approach is general and simulation based and can be easily extended to any ODE model with multiple covariate effects.
mrgsolve
codepkmodelcov <- '
$PARAM @annotated
KA : 0.5 : Absorption rate constant Ka (1/h)
CL : 4 : Clearance CL (L/h)
V : 10 : Central volume Vc (L)
Vp : 50 : Peripheral volume Vp (L)
Qp : 10 : Intercompartmental clearance Q (L/h)
CLALB : -0.8 : Ablumin on CL (ref. 45 g/L)
CLSEX : 0.2 : Sex on CL (ref. Female)
CLWT : 1 : Weight on CL (ref. 85 kg)
VSEX : 0.07 : Sex on Vc (ref. Female)
VWT : 1 : Weight on Vc (ref. 85 kg)
$PARAM @annotated // reference values for covariate
WT : 85 : Weight (kg)
SEX : 0 : Sex (0=Female, 1=Male)
ALB : 45 : Albumin (g/L)
$PKMODEL cmt="GUT CENT PER", depot=TRUE, trans=11
$MAIN
double CLi = CL *
pow((ALB/45.0), CLALB)*
(SEX == 1.0 ? (1.0+CLSEX) : 1.0)*
pow((WT/85.0), CLWT)*exp(nCL);
double V2i = V *
(SEX == 1.0 ? (1.0+VSEX) : 1.0)*
pow((WT/85.0), VWT)*exp(nVC);
double KAi = KA;
double V3i = Vp *pow((WT/85.0), 1);
double Qi = Qp *pow((WT/85.0), 0.75);
$OMEGA @annotated @block
nCL : 0.09 : ETA on CL
nVC : 0.01 0.09 : ETA on Vc
$TABLE
double CP = CENT/V2i;
$CAPTURE CP KAi CLi V2i V3i Qi WT SEX ALB
'
modcovsim <- mcode("codepkmodelcov", codepkmodelcov)
partab <- setDT(modcovsim@annot$data)[block=="PARAM", .(name, descr, unit)]
partab <- merge(partab, melt(setDT(modcovsim@param@data), meas=patterns("*"), var="name"))
knitr::kable(partab)
name | descr | unit | value |
---|---|---|---|
ALB | Albumin | g/L | 45.00 |
CL | Clearance CL | L/h | 4.00 |
CLALB | Ablumin on CL | ref. 45 g/L | -0.80 |
CLSEX | Sex on CL | ref. Female | 0.20 |
CLWT | Weight on CL | ref. 85 kg | 1.00 |
KA | Absorption rate constant Ka | 1/h | 0.50 |
Qp | Intercompartmental clearance Q | L/h | 10.00 |
SEX | Sex | 0=Female, 1=Male | 0.00 |
V | Central volume Vc | L | 10.00 |
VSEX | Sex on Vc | ref. Female | 0.07 |
VWT | Weight on Vc | ref. 85 kg | 1.00 |
Vp | Peripheral volume Vp | L | 50.00 |
WT | Weight | kg | 85.00 |
We simulate the reference subject having the reference covariate values defined in the model which are:
Weight = 85 kg, Sex = Female and Albumin = 45 g/L. We also keep the between subject variability (BSV) to illustrate its effects on the concentration-time profiles on linear and log linear scales.
idata <- data.table(ID=1:nbsvsubjects, WT=85, SEX=0, ALB=45)
ev1 <- ev(time = 0, amt = 100, cmt = 1)
data.dose <- ev(ev1)
data.dose <- setDT(as.data.frame(data.dose))
data.all <- data.table(idata, data.dose)
outputsim <- modcovsim %>%
data_set(data.all) %>%
mrgsim(end = 24, delta = 0.25) %>%
as.data.frame %>%
as.data.table
outputsim$SEX <- factor(outputsim$SEX, labels="Female")
# Only plot a random sample of N=500
set.seed(678549)
plotdata <- outputsim[ID %in% sample(unique(ID), 500)]
p1 <- ggplot(plotdata, aes(time, CP, group = ID)) +
geom_line(alpha = 0.2, size = 0.1) +
facet_grid(~ WT + SEX + ALB, labeller = label_both) +
labs(y = "Plasma Concentrations", x = "Time (h)")
p2 <- ggplot(plotdata, aes(time, CP, group = ID)) +
geom_line(alpha = 0.2, size = 0.1) +
facet_grid(~ WT + SEX + ALB, labeller = label_both) +
scale_y_log10() +
labs(y = expression(Log[10]~Plasma~Concentrations), x = "Time (h)")
egg::ggarrange(p1, p2, ncol = 2)
In this section we compute the PK parameters of interest, provide a plot of the parameters as well as of the standardized ones. We also summarize and report the BSV as ranges of 50 and 90% of patients for each PK parameter.
derive.exposure <- function(time, CP) {
n <- length(time)
x <- c(
Cmax = max(CP),
Clast = CP[n],
AUC = sum(diff(time) * (CP[-1] + CP[-n])) / 2
)
data.table(paramname=names(x), paramvalue=x)
}
refbsv <- outputsim[, derive.exposure(time, CP), by=.(ID, WT, SEX, ALB)]
p3 <- ggplot(refbsv, aes(
x = paramvalue,
y = paramname,
fill = factor(..quantile..),
height = ..ndensity..)) +
facet_wrap(~ paramname, scales="free", ncol=1) +
stat_density_ridges(
geom="density_ridges_gradient", calc_ecdf=TRUE,
quantile_lines=TRUE, rel_min_height=0.001, scale=0.9,
quantiles=c(0.05, 0.25, 0.5, 0.75, 0.95)) +
scale_fill_manual(
name = "Probability",
values = c("white", "#FF000050", "#FF0000A0", "#FF0000A0", "#FF000050", "white"),
labels = c("(0, 0.05]", "(0.05, 0.25]",
"(0.25, 0.5]", "(0.5, 0.75]",
"(0.75, 0.95]", "(0.95, 1]")) +
theme_bw() +
theme(
legend.position = "none",
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank()) +
labs(x="PK Parameters", y="") +
scale_x_log10() +
coord_cartesian(expand=FALSE)
# Obtain the standardized parameter value by dividing by the median.
refbsv[, stdparamvalue := paramvalue/median(paramvalue), by=paramname]
p4 <- ggplot(refbsv, aes(
x = stdparamvalue,
y = paramname,
fill = factor(..quantile..),
height = ..ndensity..)) +
facet_wrap(~ paramname, scales="free_y", ncol=1) +
stat_density_ridges(
geom="density_ridges_gradient", calc_ecdf=TRUE,
quantile_lines=TRUE, rel_min_height=0.001, scale=0.9,
quantiles=c(0.05, 0.25, 0.5, 0.75, 0.95)) +
scale_fill_manual(
name="Probability",
values=c("white", "#FF000050", "#FF0000A0", "#FF0000A0", "#FF000050", "white"),
labels = c("(0, 0.05]", "(0.05, 0.25]",
"(0.25, 0.5]", "(0.5, 0.75]",
"(0.75, 0.95]", "(0.95, 1]")) +
theme_bw() +
theme(
legend.position = "none",
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank()) +
labs(x="Standardized PK Parameters", y="") +
scale_x_log10() +
coord_cartesian(expand=FALSE)
p3+p4
Ranges of BSV for each PK Parameter:
bsvranges <- refbsv[,list(
P05 = quantile(stdparamvalue, 0.05),
P25 = quantile(stdparamvalue, 0.25),
P50 = quantile(stdparamvalue, 0.5),
P75 = quantile(stdparamvalue, 0.75),
P95 = quantile(stdparamvalue, 0.95)), by = paramname]
bsvranges
paramname | P05 | P25 | P50 | P75 | P95 |
---|---|---|---|---|---|
Cmax | 0.7918743 | 0.9184431 | 1 | 1.077698 | 1.185392 |
Clast | 0.4752010 | 0.7899361 | 1 | 1.286067 | 1.735681 |
AUC | 0.7063883 | 0.8917846 | 1 | 1.123854 | 1.313933 |
Based on our observed covariate data, we compute percentiles of interest that we will use to simulate data at. Common practice is to compute the 5,25,75,95 percentiles (the median being the reference). In some cases, we might want to explore the min, max or other extreme case scenarios. Care should be taken as this approach might generate unrealistic combination of covariates that can never appear in a real patient. The utility function expand.modelframe (written by Benjamin Rich) is defined in the setup section of the vignette and can be found in the source code. It facilitates the creation of a set of covariate values varying one at a time.
Dataframe Holding Combinations of Covariates:
reference.values <- data.frame(WT = 85, ALB = 45, SEX = 0)
covcomb <- expand.modelframe(
WT = c(56, 72, 98, 128), # P05, P25, P50, P75, P95
ALB = c(40, 50), # P05, P50, P95
SEX = c(1), # Reference is for SEX=0 (female)
rv = reference.values)
# Add the reference
covcomb <- rbind(covcomb, data.table(reference.values, covname="REF"))
covcomb$ID <- 1:nrow(covcomb)
covcomb
WT | ALB | SEX | covname | ID |
---|---|---|---|---|
56 | 45 | 0 | WT | 1 |
72 | 45 | 0 | WT | 2 |
98 | 45 | 0 | WT | 3 |
128 | 45 | 0 | WT | 4 |
85 | 40 | 0 | ALB | 5 |
85 | 50 | 0 | ALB | 6 |
85 | 45 | 1 | SEX | 7 |
85 | 45 | 0 | REF | 8 |
As a first step, we simulate without uncertainty and without BSV using zero_re()
at unique combination of covariates and provide a plot to visualize the effects.
idata <- data.table::copy(covcomb)
idata$covname <- NULL
ev1 <- ev(time=0, amt=100, cmt=1)
data.dose <- as.data.frame(ev1)
data.all <- data.table(idata, data.dose)
outcovcomb<- modcovsim %>%
data_set(data.all) %>%
zero_re() %>%
mrgsim(end=24, delta=0.25) %>%
as.data.frame %>%
as.data.table
outcovcomb$SEX <- factor(outcovcomb$SEX, labels=c("Female", "Male"))
ggplot(outcovcomb, aes(x=time, y=CP, col=factor(WT), linetype=SEX)) +
geom_line(aes(group=ID), alpha=1, size=1.5) +
facet_grid(ALB ~ WT, labeller=label_both) +
labs(
x = "Time (h)",
y = "Plasma Concentrations",
linetype = "Sex",
colour = "Weight",
caption = "Simulation without Uncertainty\nwithout BSV") +
coord_cartesian(ylim=c(0,3.5))
Variance Covariance Matrix of fixed effects:
theta <- unclass(as.list(param(modcovsim)))
theta[c("WT", "SEX", "ALB")] <- NULL
theta <- unlist(theta)
as.data.frame(t(theta))
KA | CL | V | Vp | Qp | CLALB | CLSEX | CLWT | VSEX | VWT |
---|---|---|---|---|---|---|---|---|---|
0.5 | 4 | 10 | 50 | 10 | -0.8 | 0.2 | 1 | 0.07 | 1 |
cor2cov <- function (cor, sd)
{
if (missing(sd)) {
sd <- diag(cor)
}
diag(cor) <- 1
n <- nrow(cor)
diag(sd, n) %*% cor %*% diag(sd, n)
}
varcov <- cor2cov(
matrix(0.2, nrow=length(theta), ncol=length(theta)),
sd=theta*0.15)
rownames(varcov) <- colnames(varcov) <- names(theta)
as.data.frame(varcov)
KA | CL | V | Vp | Qp | CLALB | CLSEX | CLWT | VSEX | VWT | |
---|---|---|---|---|---|---|---|---|---|---|
KA | 0.0056250 | 0.00900 | 0.02250 | 0.11250 | 0.02250 | -0.001800 | 4.5e-04 | 0.002250 | 0.0001575 | 0.002250 |
CL | 0.0090000 | 0.36000 | 0.18000 | 0.90000 | 0.18000 | -0.014400 | 3.6e-03 | 0.018000 | 0.0012600 | 0.018000 |
V | 0.0225000 | 0.18000 | 2.25000 | 2.25000 | 0.45000 | -0.036000 | 9.0e-03 | 0.045000 | 0.0031500 | 0.045000 |
Vp | 0.1125000 | 0.90000 | 2.25000 | 56.25000 | 2.25000 | -0.180000 | 4.5e-02 | 0.225000 | 0.0157500 | 0.225000 |
Qp | 0.0225000 | 0.18000 | 0.45000 | 2.25000 | 2.25000 | -0.036000 | 9.0e-03 | 0.045000 | 0.0031500 | 0.045000 |
CLALB | -0.0018000 | -0.01440 | -0.03600 | -0.18000 | -0.03600 | 0.014400 | -7.2e-04 | -0.003600 | -0.0002520 | -0.003600 |
CLSEX | 0.0004500 | 0.00360 | 0.00900 | 0.04500 | 0.00900 | -0.000720 | 9.0e-04 | 0.000900 | 0.0000630 | 0.000900 |
CLWT | 0.0022500 | 0.01800 | 0.04500 | 0.22500 | 0.04500 | -0.003600 | 9.0e-04 | 0.022500 | 0.0003150 | 0.004500 |
VSEX | 0.0001575 | 0.00126 | 0.00315 | 0.01575 | 0.00315 | -0.000252 | 6.3e-05 | 0.000315 | 0.0001103 | 0.000315 |
VWT | 0.0022500 | 0.01800 | 0.04500 | 0.22500 | 0.04500 | -0.003600 | 9.0e-04 | 0.004500 | 0.0003150 | 0.022500 |
mvrnorm
and then incorporate the uncertainty by simulating using a different set of parameters (row) for each replicate.First Few Rows of a Dataset Containing Simulated Fixed Effects with Uncertainty:
set.seed(678549)
# mvtnorm::rmvnorm is another option that can be explored
sim_parameters <- MASS::mvrnorm(nsim, theta, varcov, empirical=T) %>% as.data.table
head(sim_parameters)
KA | CL | V | Vp | Qp | CLALB | CLSEX | CLWT | VSEX | VWT |
---|---|---|---|---|---|---|---|---|---|
0.4187256 | 4.069118 | 8.715379 | 41.47428 | 9.455858 | -0.8111728 | 0.2039540 | 1.0617178 | 0.0630457 | 0.7045462 |
0.5098085 | 3.696576 | 8.154115 | 47.22794 | 8.277912 | -0.5331659 | 0.2231979 | 0.5778815 | 0.0606710 | 0.9258639 |
0.4855154 | 3.817648 | 9.517021 | 51.13969 | 9.383604 | -0.9545653 | 0.2154531 | 1.0727876 | 0.0752120 | 1.0813032 |
0.5375723 | 4.442963 | 7.523613 | 46.54212 | 8.688217 | -0.7444601 | 0.2021112 | 0.9116141 | 0.0726797 | 0.8183653 |
0.4850993 | 3.831527 | 10.378489 | 42.97885 | 9.669362 | -0.5975439 | 0.1165704 | 0.9228739 | 0.0670391 | 0.8989825 |
0.6586171 | 3.629422 | 11.982402 | 46.40886 | 10.628495 | -0.7070900 | 0.2536121 | 1.0691522 | 0.0848810 | 0.9973610 |
for
loop. We then overlay the previous simulation results without uncertainty on the one with uncertainty to visualize the effect of adding it.idata <- data.table::copy(covcomb)
idata$covname <- NULL
ev1 <- ev(time=0, amt=100, cmt=1)
data.dose <- as.data.frame(ev1)
iter_sims <- NULL
for(i in 1:nsim) {
data.all <- data.table(idata, data.dose, sim_parameters[i])
out <- modcovsim %>%
data_set(data.all) %>%
zero_re() %>%
mrgsim(start=0, end=24, delta=0.25) %>%
as.data.frame %>%
as.data.table
out[, rep := i]
iter_sims <- rbind(iter_sims, out)
}
iter_sims$SEX <- factor(iter_sims$SEX, labels = c("Female", "Male"))
pkprofileuncertainty<- ggplot(iter_sims, aes(x=time, y=CP, col=factor(WT), linetype=SEX)) +
geom_line(aes(group=interaction(ID, rep)), alpha=0.1, size=0.1) +
geom_line(data = outcovcomb, aes(group=interaction(ID)),
alpha= 1, size=0.7, colour = "black") +
facet_grid(ALB ~ WT, labeller=label_both) +
labs(
x = "Time (h)",
y = "Plasma Concentrations",
linetype = "No Uncertainty\nSex",
colour = "Uncertainty\nReplicates\nWeight",
caption = "Simulation with Uncertainty\nwithout BSV") +
coord_cartesian(ylim=c(0,3.5))+
guides(colour = guide_legend(override.aes = list(alpha = 1)))
pkprofileuncertainty
Similar to an earlier section, we compute the PK parameters by patient and by replicate standardize by the computed median for reference subject and provide a plot. We add some data manipulation to construct more informative labels that will help in the plotting.
Median Parameter Values for the Reference:
covcomb$covvalue[covcomb$covname=="WT"] <- paste(covcomb$WT[covcomb$covname=="WT"],"kg")
covcomb$covvalue[covcomb$covname=="ALB"] <- paste(covcomb$ALB[covcomb$covname=="ALB"],"g/L")
covcomb$covvalue[covcomb$covname=="SEX"] <- "Male"
covcomb$covvalue[covcomb$covname=="REF"] <- "85 kg\nFemale\n45 g/L"
#covcomb[covname=="REF", covvalue := "85 kg Female 45 g/L"]
covcomb <- as.data.table(covcomb)
out.df.univariatecov.nca <- merge(
out.df.univariatecov.nca,
covcomb[, list(ID, covname, covvalue)]
)
setkey(out.df.univariatecov.nca, paramname)
out.df.univariatecov.nca <- merge(
out.df.univariatecov.nca,
refvalues)
out.df.univariatecov.nca[, paramvaluestd := paramvalue/medparam]
boxplotdat <- out.df.univariatecov.nca[covname!="REF"]
boxplotdat[covname=="WT", covname2 := "Weight"]
boxplotdat[covname=="ALB", covname2 := "Albumin"]
boxplotdat[covname=="SEX", covname2 := "Sex"]
boxplotdatREFWT <- out.df.univariatecov.nca[covname=="REF"]
boxplotdatREFWT[, covname2 := "Weight"]
boxplotdatREFWT[, covvalue := covcomb[covname=="REF", covvalue]]
boxplotdatREFSEX <- out.df.univariatecov.nca[covname=="REF"]
boxplotdatREFSEX[, covname2 := "Sex"]
boxplotdatREFSEX[, covvalue := covcomb[covname=="REF", covvalue]]
boxplotdatREFALB <- out.df.univariatecov.nca[covname=="REF"]
boxplotdatREFALB[, covname2 := "Albumin"]
boxplotdatREFALB[, covvalue := covcomb[covname=="REF", covvalue]]
boxplotdat <- rbind(
boxplotdat,
boxplotdatREFWT,
boxplotdatREFSEX,
boxplotdatREFALB)
boxplotdat[paramname=="AUC", paramname2 := "AUC"]
boxplotdat[paramname=="Clast", paramname2 := "C[last]"]
boxplotdat[paramname=="Cmax", paramname2 := "C[max]"]
boxplotdat[, covname2 := factor(covname2, levels=unique(covname2))]
#boxplotdat[, covvalue := factor(covvalue, levels=unique(covvalue))]
boxplotdat[, covvalue := factor(covvalue,
levels=c("56 kg", "72 kg", "40 g/L", "Male", "85 kg\nFemale\n45 g/L", "98 kg", "128 kg", "50 g/L"))]
pkparametersboxplot<- ggplot(boxplotdat, aes(x=covvalue, y=paramvalue))+
facet_grid(paramname2 ~ covname2, scales="free", labeller=label_parsed,
switch="both") +
geom_boxplot() +
labs(y="Parameter Values") +
theme(axis.title=element_blank(),
strip.placement = "outside")
pkparametersboxplot
Here we provide an alternative visual summary of the standardized PK parameters. It shows the distribution, quantiles of interest. It isolates each covariate effects in one panel keeping the reference on its own. It is exactly the same data as the boxplots. Which visual presentation do you prefer? Which one enables you to clearly see and compare the covariate effects?
out.df.univariatecov.nca[covname=="WT", covname2 := "Weight"]
out.df.univariatecov.nca[covname=="ALB", covname2 := "Albumin"]
out.df.univariatecov.nca[covname=="SEX", covname2 := "Sex"]
out.df.univariatecov.nca[covname=="REF", covname2 := "Reference"]
out.df.univariatecov.nca[paramname=="AUC", paramname2 := "AUC"]
out.df.univariatecov.nca[paramname=="Clast", paramname2 := "C[last]"]
out.df.univariatecov.nca[paramname=="Cmax", paramname2 := "C[max]"]
out.df.univariatecov.nca[, covvalue := factor(covvalue, levels=unique(covvalue))]
out.df.univariatecov.nca[, covname2 := factor(covname2, levels=unique(covname2))]
out.df.univariatecov.nca[, paramname2 := factor(paramname2, levels=unique(paramname2))]
ggplot(out.df.univariatecov.nca, aes(
x = paramvaluestd,
y = covvalue,
fill = factor(..quantile..),
height = ..ndensity..)) +
facet_grid(covname2 ~ paramname2,
scales = "free_y",
space = "free",
labeller = label_parsed)+
annotate("rect",
xmin = 0.8,
xmax = 1.25,
ymin = -Inf,
ymax = Inf,
fill = "gray",
alpha = 0.4) +
stat_density_ridges(
geom = "density_ridges_gradient",
calc_ecdf = TRUE,
quantile_lines = TRUE,
rel_min_height = 0.001,
scale = 0.9,
quantiles = c(0.05,0.5, 0.95)) +
scale_x_continuous(
breaks = c(0.25, 0.5, 0.8, 1/0.8, 1/0.5, 1/0.25),
tran = "log") +
scale_fill_manual(
name = "Probability",
values = c("white", "#0000FFA0", "#0000FFA0", "white"),
labels = c("(0, 0.05]", "(0.05, 0.5]","(0.5, 0.95]", "(0.95, 1]")) +
geom_vline(aes(xintercept=1), size=1) +
theme_bw() +
labs(x="Effects Relative to Parameter Reference Value", y="")+
scale_x_continuous(breaks=c(0.25,0.5,0.8,1/0.8,1/0.5,1/0.25),trans ="log" )
forest_plot
To contrast the covariate effects with random unexplained variability we add to the data the BSV intervals computed in an earlier section. We then do some data manipulation and formatting to produce a plot from the package function forest_plot
. To simplify we will only keep AUC before revisiting more than one parameter plots at the end.
fpdata <- out.df.univariatecov.nca[,
setNames(as.list(quantile(paramvaluestd, probs=c(0.5, 0.05, 0.95))), c("mid", "lower", "upper")),
by=.(paramname2, covname2, covvalue)]
bsvranges[paramname=="AUC", paramname2 := "AUC"]
bsvranges[paramname=="Clast", paramname2 := "C[last]"]
bsvranges[paramname=="Cmax", paramname2 := "C[max]"]
setkey(bsvranges, paramname2)
fpdataBSV50 <- fpdata[covname2 == "Reference"]
fpdataBSV50$covname2 <- "BSV"
fpdataBSV50$covvalue <- "50% of patients"
setkey(fpdataBSV50, paramname2)
fpdataBSV50$lower <- bsvranges[,"P25"]
fpdataBSV50$upper <- bsvranges[,"P75"]
fpdataBSV90 <- fpdata[covname2 == "Reference"]
fpdataBSV90$covname2 <- "BSV"
fpdataBSV90$covvalue <- "90% of patients"
setkey(fpdataBSV90, paramname2)
fpdataBSV90$lower <- bsvranges[,"P05"]
fpdataBSV90$upper <- bsvranges[,"P95"]
fpdata <- rbind(fpdata, fpdataBSV90, fpdataBSV50)
fpdata[, LABEL := sprintf("%s [%s, %s]",
round_pad(mid, 2),
round_pad(lower, 2),
round_pad(upper, 2)) ]
setnames(fpdata, "paramname2", "paramname")
setnames(fpdata, "covname2", "covname")
setnames(fpdata, "covvalue", "label")
fpdata[, label := factor(label, levels=unique(label))]
interval_legend_text <- "Median (points)\n90% CI (horizontal lines)"
interval_bsv_text <- "BSV (points)\nPrediction Intervals (horizontal lines)"
ref_legend_text <- "Reference (vertical line)\nClinically relevant limits\n(gray area)"
area_legend_text <- "Reference (vertical line)\nClinically relevant limits\n(gray area)"
png("./Figure4_6.png",width =9 ,height = 6,units = "in",res=72)
coveffectsplot::forest_plot(fpdata[paramname=="AUC"],
ref_area = c(0.8, 1/0.8),
x_range = c(0.5, 2),
strip_placement = "inside",
base_size = 18,
y_label_text_size = 12,
y_facet_text_angle = 0,
xlabel = "Fold Change Relative to Reference",
ref_legend_text = ref_legend_text,
area_legend_text = area_legend_text,
interval_legend_text = interval_legend_text,
interval_bsv_text = interval_bsv_text,
facet_formula = "covname ~ paramname",
facet_switch = "y",
facet_scales = "free_y",
facet_space = "free",
paramname_shape = FALSE,
table_position = "right",
table_text_size = 4,
plot_table_ratio = 3,
show_table_facet_strip = "none",
logxscale = TRUE,
major_x_ticks = c(0.5, 0.8, 1/0.8, 1/0.5),
return_list = FALSE)
dev.off()
#> png
#> 2
Covariate Effects Plot With BSV.
In this section, we first show a forest_plot
built-in theme, then how you to get the ggplots as a list for further editing using ggplot code.
theme_benrich
along Additional OptionsThis is achieved by setting theme_benrich = TRUE
, specifying that you want no legend legend_position = "none"
. With this theme active you can also control the table_title
text and table_title_size
arguments.
png("./coveffectsplot4.png",width =9 ,height = 6,units = "in",res=72)
coveffectsplot::forest_plot(fpdata[paramname=="AUC"],
ref_area = c(0.8, 1/0.8),
x_range = c(0.5,2),
xlabel = "Fold Change Relative to Reference",
x_label_text_size= 10,
y_facet_text_angle = 0,
facet_formula = "covname~paramname",
theme_benrich = TRUE,
table_title_size = 15,
table_title = "Median [90% CI]",
interval_legend_text = interval_legend_text,
interval_bsv_text = interval_bsv_text,
legend_position = "none",
strip_placement = "outside",
base_size = 12,
facet_switch = "y",
facet_scales = "free_y",
facet_space = "free",
paramname_shape = FALSE,
table_position = "right",
table_text_size=4,
plot_table_ratio = 3,
show_table_facet_strip = "none",
logxscale = TRUE,
major_x_ticks = c(0.25,0.5,0.8,1/0.8,1/0.5,1/0.25),
return_list = FALSE)
dev.off()
#> png
#> 2
Covariate Effects Plot Theme Ben Rich.
You can get the underlying ggplots as a list for further editing by setting return_list = TRUE
and saving it into an object. The list will contain two objects the first being the main plot and the second the table. We illustrate how you can modify the look of the plots using regular ggplot code that modify the facet text color to gray
and italic. Finally we recombine the plots using egg::ggarrange
.
png("./coveffectsplot0.png",width =9 ,height = 6,units = "in",res=72)
plotlists <- coveffectsplot::forest_plot(fpdata[paramname=="AUC"],
ref_area = c(0.8, 1/0.8),
xlabel = "Fold Change Relative to Reference",
ref_legend_text = "Reference (vertical line)\nClinically relevant limits\n(gray area)",
area_legend_text = "Reference (vertical line)\nClinically relevant limits\n(gray area)",
interval_legend_text = interval_legend_text,
interval_bsv_text = interval_bsv_text,
facet_formula = "covname~paramname",
facet_switch = "y",
facet_scales = "free_y",
facet_space = "free",
paramname_shape = FALSE,
table_position = "right",
table_text_size=4,
plot_table_ratio = 4,
show_table_facet_strip = "none",
logxscale = TRUE,
major_x_ticks = c(0.25,0.5,0.8,1/0.8,1/0.5,1/0.25),
return_list = TRUE)
plotlists
#> [[1]]
#>
#> [[2]]
dev.off()
#> png
#> 2
main_plot <- plotlists[[1]] + theme(
panel.spacing=unit(10, "pt"),
panel.grid=element_blank(),
panel.grid.minor=element_blank(),
legend.position="bottom",
strip.placement.y="outside",
strip.background.y=element_blank(),
strip.text.y=element_text(
hjust=1,
vjust=1,
face="italic",color="gray",
size=rel(1)),
legend.text = element_text(size=rel(0.5)),
plot.margin = margin(t=0,r=0,b=0,l=5,unit="pt")) +
scale_y_discrete(
breaks=c("90% of patients",
"50% of patients",
"85 kg\nFemale\n45 g/L",
"40 g/L","50 g/L","Male",
"56 kg","72 kg","98 kg","128 kg"
),
labels=c("90% of patients",
"50% of patients",
"85 kg-Female-45 g/L",
"40 g/L","50 g/L","Male",
"56 kg","72 kg","98 kg","128 kg"
)
)
table_plot <- plotlists[[2]] + theme(
panel.border=element_blank(),
panel.spacing=unit(10, "pt"),
strip.background.y=element_blank(),
legend.text = element_text(size=rel(0.5)),
plot.margin = margin(t=0,r=5,b=0,l=0,unit="pt"))
png("./coveffectsplot5.png",width =8.5 ,height = 6,units = "in",res=72)
egg::ggarrange(
main_plot,
table_plot,
nrow = 1,
widths = c(3, 1)
)
dev.off()
#> png
#> 2
Customized Covariate Effects Plot.
Alternatively, you can launch the app by typing run_interactiveforestplot(yourdataname)
for point and click editing. This will help you in quickly generating the plot you want.
You can also have plots with more than one PK parameter. You may want to facet by parameter, or to use different shape by parameter.
This is achieved by setting paramname_shape = FALSE
and facet_formula = "covname~paramname"
. We also suppress the table by using table_position = "none"
and reduce the plot text sizes using base_size = 11
.
png("./coveffectsplot6.png",width =9.5 ,height = 6,units = "in",res=72)
forest_plot(fpdata,
ref_area = c(0.8, 1/0.8),
x_range = c(0.5,2),
xlabel = "Fold Change Relative to Reference",
facet_formula = "covname~paramname",
interval_legend_text = interval_legend_text,
interval_bsv_text = interval_bsv_text,
facet_switch = "y",
facet_scales = "free_y",
facet_space = "free",
facet_labeller = "label_parsed",
paramname_shape = FALSE,
table_position = "none",
table_text_size=4,
base_size = 11,
plot_table_ratio = 4,
show_table_facet_strip = "none",
logxscale = TRUE,
major_x_ticks = c(0.5,0.8,1/0.8,1/0.5),
x_label_text_size = 10,
return_list = FALSE)
dev.off()
#> png
#> 2
Facet By Parameter Covariate Effects Plot.
This is achieved by setting paramname_shape = TRUE
we also illustrate how you can use legend_order
to choose the legend ordering and few other options.
png("./coveffectsplot7.png",width =9.5 ,height = 6,units = "in",res=72)
forest_plot(fpdata[paramname!="AUC"],
ref_area = c(0.8, 1/0.8),
x_range = c(0.35,1/0.35),
xlabel = "Fold Change Relative to Reference",
ref_legend_text = "Reference\nClinically relevant limits\n(0.8-1.25)",
area_legend_text = "Reference\nClinically relevant limits\n(0.8-1.25)",
interval_legend_text = "Median\n90% CI",
interval_bsv_text = "BSV\nPrediction Intervals",
facet_formula = "covname~.",
paramname_shape = TRUE,
legend_order =c("shape","pointinterval","ref", "area"),
legend_shape_reverse = TRUE,
bsv_col = scales::muted("red"),
interval_col = scales::muted("blue"),
facet_switch = "y",
facet_scales = "free_y",
facet_space = "free",
table_position = "none",
table_text_size=4,
base_size = 9,
plot_table_ratio = 4,
show_table_facet_strip = "none",
logxscale = TRUE,
major_x_ticks = c(0.5,0.8,1/0.8,1/0.5),
legend_space_x_mult = 0.01,
legend_position = "right",
return_list = FALSE)
dev.off()
#> png
#> 2
Shape By Parameter Covariate Effects Plot.
We leave it up to the reader to edit the plot above to parse
the labels of the shape legend to get subscripts.
While we covered varying one at a time covariate value (marginal effects), we can use observed or simulated distribution of correlated covariates and simulate joint covariate effects as illustrated in the PK Model in Pediatric Patients vignette.