The StanMoMo
package performs Bayesian Mortality Modeling with Stan, which is a C++ package for performing full Bayesian inference (see https://mc-stan.org/). The current package supports a variety of popular mortality models: the Lee-Carter (LC) model, the Renshaw-Haberman model (LC with cohort effect), the Age-Period-Cohort (APC) model, the Cairns-Blake-Dowd (CBD) model and the M6 model (CBD with cohort effect). By a simple function call, the user obtains the MCMC simulations for each parameter, the log likelihoods and death rates predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave-future-out validation.
If you have R 4.0.0 or later and use Windows or Mac, you can directly install the binary package via
install.packages("StanMoMo",repos=c("https://cloud.r-project.org",
"https://kabarigou.github.io/drat"),type = "binary",dependencies = TRUE)
Otherwise, you can also install the source package from Github via devtools
:
The installation of the source package may take a few minutes (models need to be compiled). For this reason, we recommend to install the binary package instead. Once the package is installed, you can perform Bayesian mortality forecasting in a matter of seconds.
After installing the package, you have to load the package via:
The main purpose of this package is to provide users high-level functions for estimating and forecasting mortality models in a Bayesian setting without requiring any knowledge of the Stan modeling language. This package depends on the rstan package, which translates the Stan model to C++ code, which is compiled into a dynamic shared object (DSO). If you install the binary package (what we recommend), the mortality models are already pre-compiled. If you install the source package, the models are compiled during the installation and therefore you need a C++ compiler on your machine (for instance, Rtools for Windows or Xcode on Mac, see here for more details).
If you have any comments or suggestions about the package, feel free to email karim.barigou@univ-lyon1.fr