LSX: Model for Semisupervised Text Analysis Based on Word Embeddings

A word embeddings-based semisupervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.

Version: 1.0.2
Depends: methods, R (≥ 3.5.0)
Imports: quanteda (≥ 2.0), quanteda.textstats, stringi, digest, Matrix, RSpectra, irlba, rsvd, rsparse, proxyC, stats, ggplot2, ggrepel, reshape2, locfit
Suggests: testthat
Published: 2021-09-18
Author: Kohei Watanabe [aut, cre, cph]
Maintainer: Kohei Watanabe <watanabe.kohei at>
License: GPL-3
NeedsCompilation: no
Materials: NEWS
CRAN checks: LSX results


Reference manual: LSX.pdf


Package source: LSX_1.0.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): LSX_1.0.2.tgz, r-release (x86_64): LSX_1.0.2.tgz, r-oldrel: LSX_1.0.2.tgz
Old sources: LSX archive


Please use the canonical form to link to this page.