ClustAssess: Tools for Assessing Clustering

A set of tools for evaluating clustering similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables data-wide assessment of clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), which can be used to infer the optimal number of clusters in the data.

Version: 0.1.1
Imports: ggplot2, dplyr, fastcluster, rlang, Matrix, igraph, magrittr, Rcpp, methods, stats
LinkingTo: Rcpp
Suggests: knitr, rmarkdown, e1071, dbscan, dendextend, Seurat
Published: 2021-03-31
Author: Arash Shahsavari [aut, cre], Irina Mohorianu [aut]
Maintainer: Arash Shahsavari <as3006 at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README
CRAN checks: ClustAssess results


Reference manual: ClustAssess.pdf
Vignettes: Evaluating single-cell clustering with ClustAssess
Comparing soft and hierarchical clusterings with element-centric similarity


Package source: ClustAssess_0.1.1.tar.gz
Windows binaries: r-devel:, r-devel-UCRT:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): ClustAssess_0.1.1.tgz, r-release (x86_64): ClustAssess_0.1.1.tgz, r-oldrel: ClustAssess_0.1.1.tgz
Old sources: ClustAssess archive


Please use the canonical form to link to this page.