CausalGPS 0.2.6 (2021-09-03)
Added
- added the status of optimized compile to generate_psuedo_pop function output.
- compute_closest_wgps accepts the number of user-defined threads.
Changed
- Vignette file names.
- The trim condition from > and < into >= and <=.
- Removed seed input from generate_syn_data function. In R package, setting seed value inside function is not recommended. Users can set the seed before using the function.
- OpenMP uses user defined number of cores.
Fixed
- Initial covariate balance for weighted approach. The counter column was not preallocated correctly.
- Counter value for compiling. The initial value was set to one, which, however, zero is the correct one.
- Private variable issue with OpenMP.
- Fixed OpenMP option on macOS checks.
Removed
CausalGPS 0.2.5 (2021-07-23)
Changed
- User needs to activate the logger
Fixed
- CRAN package URLs are in canonical forms.
CausalGPS 0.2.4 (2021-07-11)
Added
- OpenMP for Rcpp code
- optimized_compile
- log_system_info()
- Frequently asked questions
- logo
Changed
- estimate_gps.Rmd
- estimate_semi_erf -> estimate_semipmetric_erf
- estimate_erf -> estimate_npmetric_erf
- estimate_hr -> estimate_pmetric_erf
- gen_pseudo_pop -> generate_pseudo_pop
- gen_syn_data -> generate_syn_data
- estimate_erf accepts counter as an input
- estimate_erf can use multiple cores
- generating_pseudo_population.Rmd
- estimate_erf function description
- estimate_hr function description
- estimate_semi_erf function description
- compute_risk function description and return value
- outcome_models.Rmd
- generate_synthetic_data.Rmd
Fixed
- Rcpp parLapply worker processors arguments
Removed
CausalGPS 0.2.3 (2021-05-12)
Fixed
CausalGPS 0.2.2 (2021-05-12)
Added
- estimate_semi_erf
- estimate_hr
Changed
- Package name: GPSmatching –> CausalGPS
GPSmatching 0.2.1 (2021-04-23)
Added
- User defined bin sequence in compiling speudo population.
- Non-parametric option for estimating GPS.
- Adaptive approach to transform features in training sessions.
- Cpp code for computing pair of w and GPS.
set_logger
function.
- Customized wrapper for ranger package.
- Extended plot function for gen_pseudo_pop object (plot.R).
- Extended plot function for estimate_erf object (plot.R).
- Extended print function for estimate_erf object (print.R).
- test-estimate_erf.R.
- create_weighting.R.
- Steps for adding test data into ‘sysdata.rda’.
weighting
option as causal inference approach.
- absolute_weighted_corr_fun.R
- Testing and running example guidelines for developers
- Customized wrapper for xgboost package.
param
as an argument to accept hyperparameters from users.
Changed
- R dependency 2.7 –> 3.5
- mclapply –> parLapply
- estimate_erf output returns S3 object.
- test-Covariate_balance.R –> test-absolute_corr_fun.R
- covariate_balance.R –> absolute_corr_fun.R
- User needs to pass
m_xgboost
instead of SL.xgboost
to use XGBoost package for prediction purposes.
Fixed
- mclapply memory issue (compute_closest_wgps.R).
GPSmatching 0.2.0 (2021-03-01)
Added
- Covariate balance check for categorical data.
- Contribution guidelines
- Parallel flag in training models (
mcSuperLearner
)
- gen_syn_data function for generating synthetic data
- Unittest for gen_syn_data
- Function to compute residuals and unittest
- Function to impute NA values based on density and unittest
- Function to separate prediction model training (train_it)
- Function to separate min and max value estimation and unittest
- Function to find the closest data based on GPS and w
- Wrapper function to generate pseudo population and test it for covariate balance (gen_pseudo_pop)
- Function to estimate only GPS value (estimate_gps)
- Helper function to take the input data + GPS values and return pseudo population based on selected causal inference approach. The output of this function may or may not satisfy the covariate balance test. (compile_pseudo_pop)
- check_args function to check availability of the required parameters.
- check_covar_balance function to check if the generated pseudo population statistically acceptable.
- create_matching function to generate pseudo population based on matching approach.
Changed
- create_matching only generates matched dataset.
- Covariate_balance.R –> covariate_balance.R
- matching_smooth –> estimate_erf.R
- risk_fun –> compute_risk
- smooth_fun –> smooth_erf
- hatvals –> estimate_hat_vals
- kernel_fun –> generate_kernel
- GPSmatching-package.R –> gpsmatching_package.R
- GPSmatching_smooth.R –> gpsmatching_smooth.R
Removed
- GPSmatching.R functions are separated into smaller functions, and the file is removed.