{nlstimedist} fits a biologically meaningful distribution function to time-sequence data (phenology), estimates parameters to draw the cumulative distribution function and probability density function and calculates standard statistical moments and percentiles.
You can install:
Data should be in tidy format. {nlstimedist} provides three example tidy datasets: lobelia
, pupae
and tilia
.
library(nlstimedist)
head(tilia)
# Day Trees
# 1 94 0
# 2 95 0
# 3 96 1
# 4 103 1
# 5 104 0
# 6 105 3
We first need to calculate the cumulative number of trees as well as the proportions. We do this using the tdData()
function.
tdTilia <- tdData(tilia, x = "Day", y = "Trees")
tdTilia
# Day Trees cumN propMax
# 3 96 1 1 0.01538462
# 4 103 1 2 0.03076923
# 6 105 3 5 0.07692308
# 8 107 1 6 0.09230769
# 10 110 4 10 0.15384615
# 11 111 7 17 0.26153846
# 12 112 3 20 0.30769231
# 14 114 1 21 0.32307692
# 15 115 3 24 0.36923077
# 16 116 6 30 0.46153846
# 18 117 3 33 0.50769231
# 19 118 2 35 0.53846154
# 20 119 2 37 0.56923077
# 21 120 5 42 0.64615385
# 22 121 2 44 0.67692308
# 23 122 2 46 0.70769231
# 24 123 4 50 0.76923077
# 25 124 1 51 0.78461538
# 27 126 3 54 0.83076923
# 28 127 1 55 0.84615385
# 29 128 1 56 0.86153846
# 30 129 1 57 0.87692308
# 31 130 2 59 0.90769231
# 32 131 4 63 0.96923077
# 33 133 1 64 0.98461538
# 34 134 1 65 1.00000000
We fit the model to the proportion of the cumulative number of trees (propMax
) in the tdTilia
object using the timedist()
function.
model <- timedist(data = tdTilia, x = "Day", y = "propMax", r = 0.1, c = 0.5, t = 120)
model
# Nonlinear regression model
# model: propMax ~ 1 - (1 - (r/(1 + exp(-c * (Day - t)))))^Day
# data: data
# r c t
# 0.02721 0.17126 124.84320
# residual sum-of-squares: 0.01806
#
# Number of iterations to convergence: 10
# Achieved convergence tolerance: 1.49e-08
We can extract the mean, variance, standard deviation, skew, kurtosis and entropy of the model as follows.
model$m$getMoments()
# mean variance sd skew kurtosis entropy
# 1 118.0325 180.7509 13.44436 4.324762 46.82073 5.36145
Similarly we can extract the RSS of the model
The probability density function (PDF) and the cumulative distribution function (CDF) of the model have their own plotting functions.