Use the 'GluonTS' deep learning library inside of 'modeltime'. Available models include 'DeepAR', 'N-BEATS', and 'N-BEATS' Ensemble. Refer to "GluonTS - Probabilistic Time Series Modeling" (<https://ts.gluon.ai/index.html>).
Version: | 0.1.0 |
Depends: | modeltime (≥ 0.3.1) |
Imports: | parsnip, timetk, magrittr, rlang (≥ 0.1.2), reticulate, tibble, forcats, dplyr, tidyr, purrr, stringr, glue, fs |
Suggests: | tidyverse, tidymodels, knitr, rmarkdown, roxygen2, testthat |
Published: | 2020-11-30 |
Author: | Matt Dancho [aut, cre], Business Science [cph] |
Maintainer: | Matt Dancho <mdancho at business-science.io> |
BugReports: | https://github.com/business-science/modeltime.gluonts/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/business-science/modeltime.gluonts |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | modeltime.gluonts results |
Reference manual: | modeltime.gluonts.pdf |
Vignettes: |
Getting Started with Modeltime GluonTS |
Package source: | modeltime.gluonts_0.1.0.tar.gz |
Windows binaries: | r-devel: modeltime.gluonts_0.1.0.zip, r-release: modeltime.gluonts_0.1.0.zip, r-oldrel: modeltime.gluonts_0.1.0.zip |
macOS binaries: | r-release: modeltime.gluonts_0.1.0.tgz, r-oldrel: modeltime.gluonts_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=modeltime.gluonts to link to this page.