An ensemble of time series outlier detection methods that can be used for compositional, multivariate and univariate data. It uses the four R packages 'forecast', 'tsoutliers', 'otsad' and 'anomalize' to detect time series outliers.
Version: | 0.1.0 |
Depends: | R (≥ 3.4.0) |
Imports: | otsad, tsoutliers, forecast, anomalize, dplyr, tibble, rlang, pracma, dobin, ICS, fastICA, gridExtra, grid, ggplot2, tidyr, kableExtra |
Suggests: | knitr, rmarkdown, tourr, stringr, broom, rgdal |
Published: | 2020-09-30 |
Author: | Sevvandi Kandanaarachchi
|
Maintainer: | Sevvandi Kandanaarachchi <sevvandik at gmail.com> |
License: | GPL-3 |
URL: | https://sevvandi.github.io/composits/ |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | composits results |
Reference manual: | composits.pdf |
Vignettes: |
composits |
Package source: | composits_0.1.0.tar.gz |
Windows binaries: | r-devel: composits_0.1.0.zip, r-release: composits_0.1.0.zip, r-oldrel: composits_0.1.0.zip |
macOS binaries: | r-release: composits_0.1.0.tgz, r-oldrel: composits_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=composits to link to this page.