Provide the core functionality to transform longitudinal data to complex-time (kime) data using analytic and numerical techniques, visualize the original time-series and reconstructed kime-surfaces, perform model based (e.g., tensor-linear regression) and model-free classification and clustering methods in the book Dinov, ID and Velev, MV. (2021) "Data Science: Time Complexity, Inferential Uncertainty, and Spacekime Analytics", De Gruyter STEM Series, ISBN 978-3-11-069780-3. <https://www.degruyter.com/view/title/576646>. The package includes 18 core functions which can be separated into three groups. 1) draw longitudinal data, such as fMRI time-series, and forecast or transform the time-series data. 2) simulate real-valued time-series data, e.g., fMRI time-courses, detect the activated areas, report the corresponding p-values, and visualize the p-values in the 3D brain space. 3) Laplace transform and kimesurface reconstructions of the fMRI data.
Version: | 1.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | stats, ggplot2, dplyr, tidyr, RColorBrewer, fancycut, scales, plotly, gridExtra, ggpubr, ICSNP, AnalyzeFMRI, rrcov, geometry, DT, forecast, fmri, pracma, zoo, extraDistr, parallel, foreach, spatstat, cubature, doParallel, reshape2, MultiwayRegression |
Suggests: | oro.nifti, magrittr, knitr, rmarkdown, webshot |
Published: | 2020-09-18 |
Author: | Yongkai Qiu [aut], Zhe Yin [aut], Jinwen Cao [aut], Yupeng Zhang [aut], Yuyao Liu [aut], Rongqian Zhang [aut], Rouben Rostamian [ctb], Ranjan Maitra [ctb], Daniel Rowe [ctb], Daniel Adrian [ctb] (gLRT method for complex-valued fMRI statistics), Yunjie Guo [aut, cre], Ivo Dinov [aut] |
Maintainer: | Yunjie Guo <jerryguo at umich.edu> |
BugReports: | https://github.com/SOCR/TCIU/issues |
License: | GPL-3 |
URL: | https://github.com/SOCR/TCIU, https://spacekime.org, https://tciu.predictive.space |
NeedsCompilation: | yes |
SystemRequirements: | GNU make |
CRAN checks: | TCIU results |
Reference manual: | TCIU.pdf |
Vignettes: |
Laplace Transform and Kimesurface Transform of TCIU Analytics Workflow of TCIU Analytics |
Package source: | TCIU_1.1.0.tar.gz |
Windows binaries: | r-devel: TCIU_1.1.0.zip, r-release: TCIU_1.1.0.zip, r-oldrel: TCIU_1.1.0.zip |
macOS binaries: | r-release: TCIU_1.1.0.tgz, r-oldrel: TCIU_1.1.0.tgz |
Old sources: | TCIU archive |
Please use the canonical form https://CRAN.R-project.org/package=TCIU to link to this page.