The design of this package allows us to run different clustering packages and compare the results between them, to determine which algorithm behaves best from the data provided.
Version: | 1.7.1 |
Depends: | R (≥ 3.5.0) |
Imports: | advclust, amap, apcluster, cluster, ClusterR, data.table, doParallel, dplyr, foreach, future, gama, ggplot2, gmp, pracma, pvclust, shiny, sqldf, stats, tools, utils, xtable |
Suggests: | DT, kableExtra, knitr, rmarkdown, shinyalert, shinyFiles, shinyjs, shinythemes, shinyWidgets, tidyverse, shinycssloaders |
Published: | 2020-12-04 |
Author: | Luis Alfonso Perez Martos [aut, cre] |
Maintainer: | Luis Alfonso Perez Martos <lapm0001 at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/laperez/clustering |
NeedsCompilation: | no |
CRAN checks: | Clustering results |
Reference manual: | Clustering.pdf |
Vignettes: |
Techniques for Evaluating Clustering Data in R. The **Clustering** Package |
Package source: | Clustering_1.7.1.tar.gz |
Windows binaries: | r-devel: Clustering_1.7.1.zip, r-release: Clustering_1.7.1.zip, r-oldrel: Clustering_1.7.1.zip |
macOS binaries: | r-release: Clustering_1.7.1.tgz, r-oldrel: Clustering_1.7.1.tgz |
Old sources: | Clustering archive |
Please use the canonical form https://CRAN.R-project.org/package=Clustering to link to this page.