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Abstract

Recent methodological researches produced permutation methods to test parameters in
presence of nuisance variables in linear models or repeated measures ANOVA. Permutation
tests are also particularly useful to overcome the multiple comparisons problem as they are
used to test the effect of factors or variables on signals while controlling the family-wise
error rate (FWER). This article introduces the permuco package which implements several
permutation methods. They can all be used jointly with multiple comparisons procedures
like the cluster-mass tests or threshold-free cluster enhancement (TFCE). The permuco

package is designed, first, for univariate permutation tests with nuisance variables, like
regression and ANOVA; and secondly, for comparing signals as required, for example, for
the analysis of event-related potential (ERP) of experiments using electroencephalography
(EEG). This article describes the permutation methods and the multiple comparisons
procedures implemented. A tutorial for each of theses cases is provided.

Keywords: projections, EEG, ERP, TFCE, cluster-mass statistics, multiple comparisons.

1. Introduction

Permutation tests are exact for simple models like one-way ANOVA and t test (Lehmann
and Romano 2008, pp. 176-177). Moreover it has been shown that they have some robust
properties under non normality (Lehmann and Romano 2008). However they require the as-
sumption of exchangeability under the null hypothesis to be fulfilled which is not the case in
a multifactorial setting. For these more complex designs, Janssen and Pauls (2003), Janssen
(2005), Pauly, Brunner, and Konietschke (2015) and Konietschke, Bathke, Harrar, and Pauly
(2015) show that permutation tests based on non exchangeable data can be exact asymptoti-
cally if used with studentized statistics. Another approach to handle multifactorial designs is
to transform the data before permuting. Several authors (Draper and Stoneman 1966; Freed-
man and Lane 1983; Kennedy 1995; Huh and Jhun 2001; Dekker, Krackhardt, and Snijders
2007; Kherad Pajouh and Renaud 2010; ter Braak 1992) have proposed different types of
transformations and Winkler, Ridgway, Webster, Smith, and Nichols (2014) gave a simple
and unique notation to compare those different methods.

Repeated measures ANOVA including one or more within subject effects are the most widely
used models in the field of psychology. In the simplest case of one single random factor, an
exact permutation procedure consists in restricting the permutations within the subjects. In
more general cases, free permutations in repeated measures ANOVA designs would violate
the exchangeability assumption. This is because the random effects associated with subjects
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and their interactions with fixed effects imply a complex structure for the (full) covariance
matrix of observations. It follows that the second moments are not preserved after permu-
tation. Friedrich, Brunner, and Pauly (2017) have derived exact asymptotic properties in
those designs for a Wald-type statistic and Kherad-Pajouh and Renaud (2015) proposed sev-
eral methods to transform the data following procedures developed by Kennedy (1995) or
Kherad Pajouh and Renaud (2010).

For linear models, permutation tests are useful when the assumption of normality is violated
or when the sample size is too small to apply asymptotic theory. In addition they can be used
to control the family wise error rate (FWER) in some multiple comparisons settings (Troendle
1995; Maris and Oostenveld 2007; Smith and Nichols 2009). These methods have been suc-
cessfully applied for the comparison of experimental conditions in both functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG) as they take advantage of the
spatial and/or temporal correlation of the data.

The aim of the present article is to provide an overview of the use of permutation methods
and multiple comparisons procedures using permutation tests and to explain how it can be
used in R (Chambers 2009) with the package permuco. Note that the presentation and dis-
cussion of the available packages that handle permutation tests in related settings is deferred
to Section 5.1, where all the notions are introduced. Appendix A shows a comparison of the
relevant code and outputs. But first, Section 2 focuses on fixed effect models. It explains the
model used for ANOVA and regression and the various permutation methods proposed in the
literature. Section 3 introduces the methods for repeated measures ANOVA. Section 4 ex-
plains the multiple comparisons procedures used for comparing signals between experimental
conditions and how permutation tests are applied in this setting. Section 5 describes addi-
tional programming details and some of the choices for the default settings in the permuco

package. Section 6 treats two real data analyses, one from a control trial in psychology and
the second from an experiment in neurosciences using EEG.

2. The fixed effects model

2.1. Model and notation

For each hypothesis of interest, the fixed effects model (used for regression or ANOVA) can
always be written as

y = Dη +Xβ + ǫ, (1)

where y
n×1

is the response variable,
[

D
n×(p−q)

X
n×q

]

is a design matrix split into the nuisance

variable(s)D (usually including the intercept) and the variable(s) of interestX associated with
the tested hypothesis. D and X may be correlated and we assume without loss of generality

that
[

D X
]

is a full rank matrix. The parameters of the full model

[

η⊤

1×(p−q)
β⊤

1×q

]⊤

are also split into the parameters associated with the nuisance variable(s) η and the one(s)
associated with the variable(s) of interest β. ǫ is an error term that follows a distribution
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Table 1: Permutation methods in the presence of nuisance variables. See text for explanations
of the symbols.

method/Authors y∗ D∗ X∗

manly (Manly 1991) Py D X
draper_stoneman (Draper and Stoneman 1966) y D PX
dekker(Dekker et al. 2007) y D PRDX
kennedy (Kennedy 1995) (PRD)y RDX
huh_jhun (Huh and Jhun 2001) (PV ⊤

D RD)y V ⊤
D RDX

freedman_lane (Freedman and Lane 1983) (HD + PRD)y D X
terBraak (ter Braak 1992) (HX,D + PRX,D)y D X

(0, σ2In). The hypothesis tested writes

H0 : β = 0 vs. H1 : β 6= 0. (2)

The permutation test is exact under the null hypothesis for finite samples if the data are
exchangeable under the null hypothesis. This assumption is not fulfilled in model (1) as we
cannot control the influence of the nuisance term Dη when permuting. In fact, under the null
hypothesis (2), the responses follow a distribution (Dη, σ2In) which are not exchangeable due
to the presence of unequal first moments. Pauly et al. (2015) show however that permuting
the responses and using a Wald-type statistic is an asymptotically exact procedure in factorial
designs. Another approach, which is the focus of this paper, is to transform the data prior
to the permutation. Those transformation procedures are what will be called permutation
methods. They are described in Chapter 2.2 and are implemented in permuco.

The permutation of a vector v is defined as Pv and the permutation of the rows of a matrix M
as PM where P is a permutation matrix (Gentle 2007, pp. 66-67). For any design matrix M ,
its corresponding “hat” matrix is HM = M(M⊤M)−1M⊤ and its corresponding “residuals”
matrix is RM = I −M(M⊤M)−1M⊤ (Greene 2011, pp. 24-25). The full QR-decomposition
is:

[

M 0
]

n×n

=
[

QM VM

]

[

UM 0
0 0

]

, (3)

whereQM
n×p

and VM
n×(n−p)

define together an orthonormal basis of Rn and where UM
p×p

is interpreted

as M in the subspace of QM . An important property of the QR-decomposition is that
HM = QMQ⊤

M and RM = VMV ⊤
M (Seber and Lee 2012, pp. 340-341).

2.2. Permutation methods for linear models and factorial ANOVAs

The discussed permutation methods are functions that transform the data in order to reduce
the effect of the nuisance variables. They can be computed for all permutations P ∈ P where
P is the set of all nP distinct permutation matrices of the same size. For any permutation
matrix P , a given permutation method will transform the observed data {y,D,X} into the
permuted data {y∗, D∗, X∗}. The permuco package provides several permutation methods
that are summarized in table 1 using a notation inspired by Winkler et al. (2014).
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The default method of permuco is the freedman_lane method that works as follows: we
first fit the “small” model which only uses the nuisance variables D as predictors. Then, we
permute its residuals and add them to the fitted values. Theses steps produce the permuted
response variable y∗ which constitutes the “new sample”. It is fitted using the unchanged
design D and X. In this procedure, only the residuals are permuted and they are supposed
to share the same expectation (of zero) under the null hypothesis. For each permutation,
the effect of nuisance variables is hence reduced. Using the above notation, the fitted values
of the “small” model can be written as HDy and its residuals RDy. Its permuted version
is pre-multiplied by a permutation matrix, e.g., PRDy. The permuted response variable is
therefore simply written as y∗ = HDy+PRDy = (HD +PRD)y, as displayed in table 1. The
permuted statistics (e.g. t or F statistics) are then computed using y∗ and the unchanged
design matrices D∗ = D and X∗ = X.

All the remaining permutation methods are also summarized by the transformation of y, D
and X into y∗, X∗ and D∗ and are explained next. The manly method simply permutes the
response (this method is sometimes called raw permutations). Even if this method does not
take into account the nuisance variables, it still has good asymptotic properties when using
studentized statistics. draper_stoneman permutes the design of interest (note that without
nuisance variables permuting the design is equivalent to permuting the response variable).
However, this method ignores the correlation between D and X that is typically present in
regressions or unbalanced designs. For the dekker method, we first orthogonalize X with
respect to D, then we permute the design of interest. This transformation reduces the influ-
ence of the correlation between D and X and is more appropriate for unbalanced design. The
kennedy method orthogonalizes all of the elements (y, D and X) with respect to the nuisance
variables, removing the nuisance variables in the equation, and then permutes the obtained
response. Doing so, all the design matrices lie in the span of X, a sub-space of observed
design X and D. However this projection modifies the distribution of the residuals that lose
exchangeability (RDy ∼ (0, RDσ

2) for original IID data). The huh_jhun method is similar to
kennedy but it applies a second transformation (V ⊤

D ) to the data to ensure exchangeability (up
to the second moment, V ⊤

D RDy ∼ (0, In−(p−q)σ
2)). The VD matrix comes from the Equation 3

and has a dimension of n × (n− (p− q)). It implies that the P ’s matrices for the huh_jhun

method have smaller dimensions. The terBraak method is similar to freedman_lane but
uses the residuals of the full model. This permutation method creates a new response vari-
able y∗ which assumes that the observed value of the estimate β̂|y is the true value of β.
Computing the statistic using y∗, X, D would not produce a permutation distribution under
the null hypothesis. To circumvent this issue, the method changes the null hypothesis when
computing the statistics at each permutation to H0 : β = β̂|y = (X⊤RDX)−1X⊤RDy|y. The
right part of this new hypothesis corresponds to the observed estimate of the parameters of
interest under the full model, and implicitly uses a pivotal assumption. Note that terBraak
is the only method where the statistic computed with the identity permutation is different
from the observed statistic. The notation RD,X means that the residuals matrix is based on
the concatenation of the matrices D and X. See Section 5.2 for advises on the choice of the
method.

For each of the methods presented in Table 1, permutation tests can be computed using
different statistics. For univariate or multivariate β parameters, the permuco package imple-
mented a F statistic that constitutes a marginal test (or “type III” sum of square) (Searle
2006, pp. 53-54). For a univariate β

1×1
, one- and two-sided tests (based on a t-statistic) are
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also implemented. We write the F statistic as:

F =
y⊤HRDXy

y⊤RD,Xy

n− p

p− q
. (4)

When q = 1, the t statistic is:

tSt =
(X⊤RDX)−1XRDy

√

y⊤RD,Xy(X⊤RDX)−1

√
n− p, (5)

where the numerator is the estimate of β under the full model. Note that the statistic
can be simplified by a factor of (X⊤RDX)−1/2 . The two statistics are function of data.
They lead to the general notation t = t(y,D,X) when applied to the observed data and to
t∗ = t(y∗, D∗, X∗) when applied to the permuted data. The permuted statistics constitute
the set T which contains the t∗ for all P ∈ P. We define the permuted p value as p =
1
nP

∑

t∗∈T
I (|t∗| ≥ |t|), for a two-tailed t test, p = 1

nP

∑

t∗∈T
I (t∗ ≥ t), for an upper-tailed

t test or an F test and finally p = 1
nP

∑

t∗∈T
I (t∗ ≤ t), for a lower-tailed t test, where I(·) is

the indicator function.

3. Repeated measures ANOVA

3.1. Model and notation

We write the repeated measures ANOVA model in a linear mixed effects form:

y = Dη +Xβ + E0κ+ Z0γ + ǫ, (6)

where y
n×1

is the response, the fixed part of the design is split into the nuisance variable(s)

D
n×(p1−q1)

, and the variable(s) of interest X
n×(p1)

. The specificity of the repeated measures

ANOVAmodel allows us to split the random part into E0

n×(p02−q02)
and Z0

n×q02

which are the random

effects associated with D and X respectively (Kherad-Pajouh and Renaud 2015). The fixed

parameters are

[

η⊤

1×(p1−q1)
β⊤

1×q1

]⊤

. The random part is

[

κ⊤
1×(p02−q02)

γ⊤

1×q02

]⊤

∼ (0,Ω) and

ǫ ∼ (0, σ2I). The matrices associated with the random effects E0 and Z0 can be computed
using:

E0 = (D0′
within ∗ Z0′

∆)
⊤ and Z0 = (X0′

within ∗ Z0′
∆)

⊤, (7)

where D0
within and X0

within are overparametrized matrices and are associated with the within
effects in the design matrices D and X. Z0

∆ is the overparametrized design matrix associated
to the subjects and ∗ is the column-wise Khatri-Rao product (Khatri and Rao 1968). Since the
matrices E0 and Z0 are overparametrized and colinear to the intercept or between-participant
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Table 2: Permutation methods in the presence of nuisance variables for repeated measures
ANOVA.

method y∗ D∗ X∗ E∗ Z∗

Rd_keradPajouh_renaud (RD) PRDy RDX RDZ
Rde_keradPajouh_renaud (RD,E) PRD,Ey RD,EX RD,EZ

effects they cannot directly be used to compute their corresponding sums of squares. We need
versions that are constrained into their respective appropriate sub-spaces:

E = RD,XE0 and Z = RD,XZ0. (8)

The matrices E and Z are respectively of rank p2−q2 and q2 and are the ones used to compute
F statistics. Formally, the hypothesis of interest associated with Equation 6 writes:

H0 : β = 0 vs. H1 : β 6= 0. (9)

3.2. Permutation methods for repeated measures ANOVA

Similarly to the fixed effects model, we can test hypotheses using permutation methods
(Kherad-Pajouh and Renaud 2015). The ones that are implemented in the permuco package
are given in Table 2. The two methods are based on a similar idea. By pre-multiplying the
design and response variables by RD or RD,E , we orthogonalize the model to the nuisance
variables. This procedure can be viewed as an extension of the kennedy procedure (see table
1) to repeated measures ANOVA.

The hypothesis in (9) is tested based on the conventional F statistic for repeated measures
ANOVA:

F =
y⊤HRDXy

y⊤HZy

p2
p1

. (10)

As for the fixed effects model, the statistic is written as a function of the data t = t(y,D,X,E,Z)
and the permuted statistic t∗ = t(y∗, D∗, X∗, E∗, Z∗) is a function of the permuted data under
the chosen method. The p value is defined as in the fixed effect case.

Here is a small example of the creation of the matrices for the F statistic in repeated measures
ANOVA. In a balanced design with 12 participants, 1 between-participants factor B2 with
2 levels and 1 within-participants factor W3 with 3 levels, assuming the test of the main
effect of B2, the denominator of Equation 10 represents the sum of squares associated to the
participants. The matrix Z0 has one column for each participant coding with 0 and 1 for the
participant. It is overparametrized as it has a dimension 36× 12 and a rank of 12. However,
the matrix Z0 is not orthogonal the fixed part of the design, especially the intercept and
the main effect of B2. Computing the sum of squares using directly Z0 would also consider
the effect of the intercept and of B2 in addition of the effect of the participants. If we only
want the sum of squares associated to the participants, we must reduce the rank of Z0 which
means, geometrically, orthogonalizing Z0 to the intercept and to the matrix associated to
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B2. Moreover, we are not interested by the estimations of the parameters γ but only by the
projection of y into Z0 which means that any matrices spanning the appropriate space is a
potential candidate for B2. Hence, we only have to orthogonalize Z0 to the fixed part of the
design which is done using Equation 8. It creates the matrix Z with a dimension of 36× 12
but a rank of 10. Note that most of the columns of [D X] are not useful when computing
RD,X as the matrix Z0 is already orthonogonal to the part of the design coding the effects of
W3 and the interaction between B2 and W3.

4. Signal and multiple comparisons

In EEG experiments, researchers are often interested in testing the effect of conditions on
the event-related potential (ERP). It is a common practice to test the signals at each time
point of the ERP. In that kind of experiments, thousands of tests are typically carried out
(e.g., one measure every 2ms over 2 seconds) and the basic multiple hypotheses corrections
like Bonferroni (Dunn 1958) are useless as their power is too low.

Troendle (1995) proposed a multiple comparisons method that considers the correlation be-
tween the resampling data. This method does not specifically use the time-neighborhood
information of a signal but uses wisely the general correlation between the statistics and may
be used in more general settings.

Better known, the cluster-mass test (Maris and Oostenveld 2007) has shown to be powerful
while controlling the family-wise error rate (FWER) in EEG data analysis. And recently
using a similar idea, the threshold-free cluster-enhancement (TFCE) was developed for fMRI
data (Smith and Nichols 2009) and EEG data (Pernet, Latinus, Nichols, and Rousselet 2015),
but usually presented only with one factor.

All these approaches use permutations and are compatible with the methods displayed in
Tables 1 and 2, as shown next. In addition to multiple comparisons procedures that use
permutation, the well-known Bonferroni and Holm (Holm 1979) corrections and the control
of the false positive rate by Benjamini and Hochberg (1995) are also implemented in permuco.

4.1. Model and notation

We can construct a model at each time point s ∈ {1, . . . , k} for the fixed effects design as:

ys = Dηs +Xβs + ǫs, (11)

where ys is the response variable for all observations at time s and each of the k models are
the same as (1). D and X, the design matrices, are then identical over the k time points. The
aim is to test simultaneously all k hypotheses Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for s ∈ {1, . . . , k}

while controlling for the FWER through the k tests. Likewise, the random effects model is
written:

ys = Dηs +Xβs + E0κs + Z0γs + ǫs, (12)

where each of the k models are defined as in (6) and, similarly, we are interested to test the
k hypotheses Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for s ∈ {1, . . . , k}.
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For both models, we choose one of the permutation methods presented in Tables 1 or 2 and
compute the k observed statistics ts, the k sets of permutated statistics Ts, which lead to k
raw or uncorrected p values.

To correct them, the k sets of permutated statistics Ts can be analyzed as one set of multivari-
ate statistic. It is done simply by combining the k univariate permutation-based distributions
into a single k-variate distribution which maintains the correlation between tests. For each
permutation, we simply combine all k univariate permuted statistics t∗1, . . . , t

∗
k into one mul-

tivariate permuted statistic t∗ = [t∗1 . . . t∗k]
⊤. The three multiple comparisons procedures

described below are all based on this multivariate distribution and take advantage of the
correlation structure between the tests.

4.2. Troendle’s step-wise resampling method

The method developed by Troendle (1995) takes advantage of the form of the multivariate
resampling distribution of the t∗s. If we assume that ts is distributed according to Ts then by or-
dering the observed statistics ts we obtain t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k) with their correspond-
ing k null hypotheses H(1) ≤ · · · ≤ H(s) ≤ · · · ≤ H(k). Then Troendle (1995) use the following
arguments. First, for all s, controlling the FWER with PH(1),...,H(k)

(

maxi∈{1,...,k} T(i) ≤ t(s)
)

<
αFWER is a conservative approach. Secondly, if we reject H(k) and want to test H(k−1), we can
safely assume thatH(k) is false while controlling the FWER. EitherH(k) is true and we already
made a type I error or was wrong and we can go as if H(k) was absent. We can then update
our decision rule for testing H(k−1) by PH(1),...,H(k−1)

(

maxi∈{1,...,k−1} T(i) ≤ t(k−1)

)

< αFWER.
We continue until the first non-significant result and declare all s with a smaller t statistic as
non-significant.

This procedure is valid in a general setting and is easly implemented for permutation tests.
The permuted sets Ts is interpreted as a nonparametric distribution of the Ts and based on
Troendle (1995), we use the following algorithm to compute the corrected p value:

Algorithm 1 Troendle corrected p value

1: Order the k observed statistics ts into t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k)
2: for i ∈ {1, . . . k} do

3: Define the null distribution S(k−i+1) for t(k−i+1) by:
4: for each P ∈ P do

5: Return the maximum over the k − i+ 1 first values t∗(s) for s ∈ {1, . . . , k − i+ 1}
6: Define the corrected p value p(k−i+1) =

1
nP

∑

t∗∈S(k−i+1)
I
(

t∗ ≥ t(k−i+1)

)

7: Control for a stepwise procedure by:
8: if p(k−i+1) < p(k−i+2) and i > 1 then p(k−i+1) := p(k−i+2)

4.3. Cluster-mass statistic

The method proposed by Maris and Oostenveld (2007) for EEG rely on a continuity argument
that implies that an effect will appear into clusters of adjacent timeframes. Based on all time-
specific statistics, we form these clusters using a threshold τ as follows (see Figure 1). All the
adjacent time points for which the statistics are above this threshold define one cluster Ci for
i ∈ [1, . . . , nc], where nc is the number of clusters found in the k statistics. We assign to each
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Figure 1: Display of the 600 statistics corresponding to the tests on 600 time points. Here
4 clusters are found using a threshold τ = 4. Using the sum to aggregate the statistics, for
each cluster i, the shaded area underneath the curve represents its cluster-mass mi.

time point in the same cluster Ci, the same cluster-mass statistic mi = f(Ci) where f is a
function that aggregates the statistics of the whole cluster into a scalar; typically the sum of
the F statistics or the sum of squared of the t statistics. The cluster-mass null distribution M

is computed by repeating the process described above for each permutation. The contribution
of a permutation to the cluster-mass null distribution is the maximum over all cluster-masses
for this permutation. This process is described in Algorithm 2.

Algorithm 2 Cluster-mass null distribution M

1: for each P ∈ P do

2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}.
3: Find the n∗

c clusters C∗
i as the sets of adjacent time points which statistic is above τ .

4: Compute the cluster-mass for each cluster m∗
i = f(C∗

i )
5: Return the maximum value over the n∗

c values m∗
i .

To test the significance of an observed cluster Ci, we compare its cluster-mass mi = f(Ci)
with the cluster-mass null distribution M . The p value of the effect at each time within a
cluster Ci is the p value associated with this cluster, i.e. pi =

1
nP

∑

m∗∈M
I(m∗ ≥ mi).

In addition to the theoretical properties of this procedure (Maris and Oostenveld 2007), this
method makes sense for EEG data analysis because if a difference of cerebral activity is
believed to happen at a time s for a given factor, it is very likely that the time s+1 (or s−1)
will show this difference too.
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Figure 2: The TFCE transforms the statistic ts using formula in (13). The extend e(h), in
red, is shown for a given height h. The TFCE statistics us at s can be viewed as a function
of characteristics in the grey area.

4.4. Threshold-free cluster-enhancement

Although it controls (weakly) the FWER for any a priori choice of threshold, the result of
the cluster-mass procedure is sensitive to this choice. The TFCE (Smith and Nichols 2009) is
closely related to the cluster-mass but gets rid of this seemingly arbitrary choice. It is defined
at each time s ∈ [1, . . . , k] for the statistics ts as:

us =

∫ h=ts

h=t0

e(h)EhHdh, (13)

where e(h) is the extend at the height h and it is interpreted as the length of a cluster for a
threshold of h. E and H are free parameters named the extend power, and the height power
respectively. t0 is set close to zero. Figure 2 illustrates how the TFCE statistic is computed
for a given time point s.

We construct the TFCE null distribution U by applying the formula in (13) at each time-
point of the permuted statistics t∗s for s ∈ {1, . . . , k} to produce for each permutation, k
values u∗s. Then the contribution of a permutation to U is the maximum of all k values u∗s.
In practice, the integral in (13) is approximated numerically using small dh ≤ 0.1, (Smith
and Nichols 2009, Pernet et al. (2015)).

At time s, the statistic ts will be modified using the formula in (13). The formula can be
viewed as a function of characteristics in the grey area (its area in the special case where both
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E and H are set to 1).

Algorithm 3 Threshold-free cluster-enhancement null distribution U

1: for each P ∈ P do

2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}
3: Compute the k enhanced statistics u∗s using a numerical approximation of (13)
4: Return the maximum over the k value u∗s

To test the significance of a time point s we compare its enhanced statistics us with the
threshold-free cluster-enhancement null distribution U . For an F test we define the p value
as ps =

1
nP

∑

u∗∈U
I(u∗ ≥ us).

4.5. Interpreting cluster based inference

The cluster-mass test and the TFCE are methods based on clustering the data and the inter-
pretation of significant findings is then not intuitive. First, note that the Troendle’s method is
not based on clustering and does not have these issues. Its interpretation is straight-forwards
as we can interpret individually each discovery. For the cluster-mass test the interpretation
should be done at a cluster level: a significant cluster is a cluster which contains at least one
significant time-point. It follows that the cluster-mass test does not allows the interpretation
of the precise time location of clusters (Sassenhagen and Draschkow 2019). Intuitively, the
cluster-mass test is a two steps procedure: first, it aggregates time-points into clusters, and
then summarizes them using the cluster-mass. The inference is only performed at the second
step which looses any information on the shape and size of the clusters. It implies that the
interpretation of individual time-point is proscribed. Finally, the transformation of the TFCE
statistic is an integration over all thresholds of cluster statistics (Smith and Nichols 2009).
Therefore, the TFCE does not allow an interpretation of each time-point individually either
as it also summarizes statistics using the concept of clusters. Thus, the interpretation of
individual time-point must also involves it. Therefore, a significant time-point must be inter-
preted as a time-point being part of at least one significant cluster (among all clusters formed
using all thresholds), where a significant cluster contains at least one significant time-point.

5. Comparison of packages, parameters choice and implementation details

5.1. Comparison of packages

Several packages for permutation tests are available for R in CRAN. Since permutation tests
have such a variety of applications, we only review packages (or the part of packages) that
handle regression, ANOVA or comparison of signals.

For testing one factor, the perm (Fay and Shaw 2010), wPerm (Weiss 2015) and coin (Hothorn,
Hornik, Van De Wiel, Zeileis et al. 2008) packages produce permutation tests of differences of
locations between two or several groups. The latter can also test the difference within groups
or block, corresponding to a one within factor ANOVA.

The package lmPerm (Wheeler and Torchiano 2016) produces tests for multifactorial ANOVA
and repeated measures ANOVA. It computes sequential (or Type I) and marginal (or Type
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III) tests for factorial ANOVA and ANCOVA but only the sequential is implemented for
repeated measures, even when setting the parameter seqs = FALSE. The order of the factors
will therefore matter in this case. The permutation method consists in permuting the raw data
even in the presence of nuisance variables, which correspond to the manly method, see Table
1. For repeated measures designs, data are first projected into the "Error()" strata and then
permuted, a method that has not been validated (to our knowledge) in any peer-reviewed
journal. Additionally, lmPerm by default uses a stopping rule based on current p value to
define the number of permutations. By default, the permutations are not randomly sampled
but modified sequentially merely on a single pair of observations. This speeds up the code
but the quality of the obtained p value is not well documented.

The flip package (Finos 2014) produces permutation and rotation tests (Langsrud 2005) for
fixed effects and handles nuisance variables based on methods similar to the huh_juhn method
of table 1. It performs tests in designs with random effects only for singular models (e.g. rep-
etition of measures by subjects in each condition) with method based on Basso and Finos
(2012) and Finos and Basso (2014) to handle nuisance variables.

The GFD package (Friedrich, Sarah, Konietschke, Frank, and Pauly, Markus 2017) produces
marginal permutation tests for pure factorial design (without covariates) with a Wald-type
statistic. The permutation method is manly. This method has been shown to be asymptot-
ically exact even under heteroscedastic conditions (Pauly et al. 2015). Moreover, Friedrich,
Konietschke, and Pauly (2019) generalize these tests to multivariate data like MANOVA
models.

To our knowledge, only the permuco package provides tests for comparison of signals.

The codes and outputs for packages that perform ANOVA/ANCOVA are given in Appendix
A.1 and in Appendix A.2 for repeated measures. For fixed effects, this illustrates that per-

muco, flip and lmPerm handle covariates and are based on the same statistic (F ) whereas
GFD uses the Wald-type statistic. It also shows that flip is testing one factor at a time (main
effect of sex in this case) whereas the other packages produce directly tests for all the effects.
Also, the nuisance variables in flip must be carefully implemented using the appropriate cod-
ing variables in case of factors. Note that lmPerm centers the covariates using the default
setting and that it provides both marginal (Type III) or sequential (Type I) tests.

Concerning permutation methods, only the manly method is used for both lmPerm and
GFD, the flip package uses the huh_jhun method, whereas multiple methods can be set by
users using the permuco package. Note also that different default choices for the V matrix as
implemented in flip (based on eigendecomposition) and permuco (based on QR decomposition)
packages lead to slightly different results (see Table 1 for more information on the permutation
methods).

Finally, concerning repeated measures designs, flip cannot handle cases where measures are not
repeated in each condition for each subject, and therefore cannot be compared in Appendix
A.2. As already said, lmPerm produces sequential tests in repeated measures designs and
permuco produces marginal tests. This explains why, with unbalanced data, only the last
interaction term in each strata produces the same statistic.
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5.2. Permutation methods

For the fixed effects model, simulations (Kherad Pajouh and Renaud 2010; Winkler et al.

2014) show that the method freedman_lane, dekker, huh_jhun and terBraak perform well,
whereas manly, draper_stoneman and kennedy can be either liberal or conservative. More-
over Kherad Pajouh and Renaud (2010) provide a proof for an exact test of the huh_jhun

method under sphericity. Note that huh_jhun will reduce the dimensionality of the data and
if n − (p − q) ≤ 7 the number of permutations may be too low. Based on all the above
literature the default method for the permuco package is set to freedman_lane.

For the random effects model, Kherad-Pajouh and Renaud (2015) show that a more secure
approach is to choose the Rde_keradPajouh_renaud method.

All n! permutations are not feasible already for moderate sized datasets. A large subset of
permutation is used instead, and it can be tuned with the np argument. The default value
is np = 5000. Winkler, Ridgway, Douaud, Nichols, and Smith (2016) recall that with np

= 5000 the 0.95% confidence interval around p = 0.05 is relatively small: [0.0443; 0.0564].
For replicability purpose, the P argument can be used instead of the np argument. The P

argument needs a Pmat object which stores all permutations. For small datasets, if the np

argument is greater than the number of possible permutations (n!), the tests will be done on
all permutations. This can be also be selected manually by setting type = "unique" in the
Pmat functions.

Given the inequality sign in the formulas for the p value described at the end of Section 2.2,
the minimal p value is 1/np, which is a good practice for permutation tests. Moreover this
implies that the sum of the two one-sided p values is slightly greater than 1.

The huh_jhun method is based on a random rotation that can be set by a random n × n
matrix in the rnd_rotation argument. This random matrix will be orthogonalized by a QR
decomposition to produce the proper rotation. Note that the random rotation in the huh_jhun
method allows us to test the intercept, which is not available for the other methods.

5.3. Multiple comparisons

The multcomp argument can be set to "bonferroni" for the Bonferroni correction (Dunn
1958), to "holm" for the Holm correction (Holm 1979), "benjamini_hochberg" for the
Benjamini-Hochberg method (Benjamini and Hochberg 1995), to "troendle", see chapter
4.2, to "clustermass", see chapter 4.3 and to "tfce", see chapter 4.4. Note that in the
permuco package, these 6 methods are available in conjunction with permutation, although
the first 3 methods are general procedures that could also be used in a parametric setting.

For the "clustermass" method, the threshold parameter of the cluster-mass statistic is
usually chosen by default at the 0.95 quantile of the corresponding univariate parametric
distribution; but the FWER is preserved for any a priori value of the threshold that the user
may set. The mass function is specified by the aggr_FUN argument. It is set by default to the
sum of squares for a t statistic and the sum for an F . It should be a function that returns a
positive scalar which will be large for an uncommon event under the null hypothesis (e.g., use
the sum of absolute value of t statistics instead of the sum). It can be tuned depending on the
expected signal. For the t statistic, typically, the sum of squares will detect more efficiently
high peaks and the sum of absolute values will detect more efficiently wider clusters.

For the "tfce" method, the default value for the extend parameter is E = 0.5 and for the
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height H = 2 for t tests and, for F test, it is E = 0.5 and H = 1 following the recommendations
of Smith and Nichols (2009) and Pernet et al. (2015). The ndh parameter controls the number
of steps used in the approximation of the integral in (13) and is set to 500 by default.

The argument return_distribution is set by default to FALSE but can be set to TRUE to
return the large matrices (nP × k) with the value of the permuted statistics.

The algorithm and formula presented in the previous sections may not be efficient for very
large size of data. When available, they are implemented in a more efficient way in permuco.
For example, to reduce the computing time, the permuted statistics are computed through a
QR decomposition using the qr, qr.fitted, qr.resid or qr.coef functions.

6. Tutorial

To load the permuco package:

R> install.packages("permuco")

R> library("permuco")

6.1. Fixed effects model

The emergencycost dataset contains information from 176 patients from an emergency service
(Heritier, Cantoni, Copt, and Victoria-Feser 2009). The variables are the sex, the age (in
years), the type of insurance (private/semiprivate or public), the length of the stay (LOS) and
the cost. These observational data allow us to test which variables influence the cost of the
stay of the patients. In this example, we will investigate the effect of the sex and of the type
of insurance on the cost and we will adjust those effects by the length of the stay. To this
end, we perform an ANCOVA and need to center the covariate.

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = F)

The permutation tests are obtained with the aovperm function. The np argument sets the
number of permutations. We choose to set a high number of permutations (np = 100000) to
reduce the variablity of the permutation p values so that they can safely be compared to the
parametric ones. The aovperm function automatically converts the coding of factors with the
contr.sum which allows us to test the main effects of factors and their interactions.

R> mod_cost_0 <- aovperm(cost ~ LOSc * sex * insurance, data = emergencycost,

+ np = 100000)

R> mod_cost_0

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.

SS df F parametric P(>F)

LOSc 2.162e+09 1 483.4422 0.0000
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sex 1.463e+07 1 3.2714 0.0723

insurance 6.184e+05 1 0.1383 0.7105

LOSc:sex 8.241e+06 1 1.8427 0.1765

LOSc:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 1.239e+05 1 0.0277 0.8680

LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168

permutation P(>F)

LOSc 0.0000

sex 0.0763

insurance 0.6794

LOSc:sex 0.1576

LOSc:insurance 0.0233

sex:insurance 0.8537

LOSc:sex:insurance 0.0847

Residuals

The interaction LOSc:insurance is significant both using the parametric p value 0.0116 and
the permutation one 0.0233 using a 5% level. However, the difference between these 2 p values
is 0.0117 which is high enough to lead to different conclusions e.g., in case of correction for
multiple tests or a smaller α level.

If we are interested in the difference between the groups for a high value of the covariate, we
center the covariate to the third quantile (14 days) and re-run the analysis.

R> emergencycost$LOS14 <- emergencycost$LOS - 14

R> mod_cost_14 <- aovperm(cost ~ LOS14 * sex * insurance, data = emergencycost,

+ np = 100000)

R> mod_cost_14

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.

SS df F parametric P(>F)

LOS14 2.162e+09 1 483.4422 0.0000

sex 2.760e+07 1 6.1703 0.0140

insurance 9.864e+05 1 0.2206 0.6392

LOS14:sex 8.241e+06 1 1.8427 0.1765

LOS14:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 7.722e+05 1 0.1727 0.6783

LOS14:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168

permutation P(>F)

LOS14 0.0000

sex 0.0224

insurance 0.6082
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LOS14:sex 0.1576

LOS14:insurance 0.0233

sex:insurance 0.6540

LOS14:sex:insurance 0.0847

Residuals

For a long length of stay, the effect of sex is significant using the parametric p value p = 0.014
and the permutation one p = 0.0224.

If the researcher has an a priori oriented alternative hypothesis HA : βsex=M > βsex=F ,
the lmperm function produces one-sided t tests. To run the same models as previously, we
first need to set the coding of the factors with the contr.sum function before running the
permutation tests.

R> contrasts(emergencycost$insurance) <- contr.sum

R> contrasts(emergencycost$insurance)

[,1]

public 1

semi_private -1

R> contrasts(emergencycost$sex) <- contr.sum

R> contrasts(emergencycost$sex)

[,1]

F 1

M -1

R> modlm_cost_14 <- lmperm(cost ~ LOS14 * sex * insurance,

+ data = emergencycost, np = 100000)

R> modlm_cost_14

Table of marginal t-test of the betas

Permutation test using freedman_lane to handle nuisance variables and

100000 permutations.

Estimate Std. Error t value parametric Pr(>|t|)

(Intercept) 14217.0 360.17 39.4730 0.0000

LOS14 845.5 38.45 21.9873 0.0000

sex1 -894.7 360.17 -2.4840 0.0140

insurance1 169.1 360.17 0.4696 0.6392

LOS14:sex1 -52.2 38.45 -1.3575 0.1765

LOS14:insurance1 98.1 38.45 2.5512 0.0116

sex1:insurance1 -149.7 360.17 -0.4155 0.6783

LOS14:sex1:insurance1 -66.7 38.45 -1.7347 0.0846

permutation Pr(<t) permutation Pr(>t)

(Intercept)
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LOS14 1.0000 0.0000

sex1 0.0152 0.9848

insurance1 0.6823 0.3177

LOS14:sex1 0.0796 0.9204

LOS14:insurance1 0.9868 0.0132

sex1:insurance1 0.3337 0.6663

LOS14:sex1:insurance1 0.0395 0.9605

permutation Pr(>|t|)

(Intercept)

LOS14 0.0000

sex1 0.0224

insurance1 0.6082

LOS14:sex1 0.1576

LOS14:insurance1 0.0233

sex1:insurance1 0.6540

LOS14:sex1:insurance1 0.0847

The effect sex1 is significant for both the parametric one-sided p value p = 0.007 and the
permutation one-sided p value p = 0.0152. It indicates that when the length of the stay is
high, men have a shorter cost than women.

To test the effect of the sex within the public insured persons (called simple effect), we
change the coding of the factors inside the data.frame using the contr.treatment function
and disable the automatic recoding using the argument coding_sum = FALSE.

R> contrasts(emergencycost$insurance) <- contr.treatment

R> emergencycost$insurance <- relevel(emergencycost$insurance, ref = "public")

R> contrasts(emergencycost$insurance)

semi_private

public 0

semi_private 1

R> contrasts(emergencycost$sex) <- contr.sum

R> contrasts(emergencycost$sex)

[,1]

F 1

M -1

R> mod_cost_se <- aovperm(cost ~ LOSc * sex * insurance, data = emergencycost,

+ np = 100000, coding_sum = FALSE)

R> mod_cost_se

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.
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SS df F parametric P(>F)

LOSc 9.512e+09 1 2126.7539 0.0000

sex 6.092e+07 1 13.6210 0.0003

insurance 6.184e+05 1 0.1383 0.7105

LOSc:sex 1.510e+08 1 33.7708 0.0000

LOSc:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 1.239e+05 1 0.0277 0.8680

LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168

permutation P(>F)

LOSc 0.0000

sex 0.0004

insurance 0.6794

LOSc:sex 0.0000

LOSc:insurance 0.0233

sex:insurance 0.8537

LOSc:sex:insurance 0.0847

Residuals

The sex row can be interpreted as the effect of sex for the public insured persons for an
average length of stay. Both the parametric p = 0.0003 and permutation p value p = 0.0004
show significant effect of sex within the public insured persons.

Given the skewness of the data for each case where the permutation test differs from the
parametric result, we tend to put more faith on the permutation result since it does not rely
on assumption of normality.

6.2. Repeated measures ANCOVA

The jpah2016 dataset contains a subset of a control trial in impulsive approach tendencies
toward physical activity or sedentary behaviors. It contains several predictors like the body
mass index, the age, the sex, and the experimental conditions. For the latter, the subjects were
asked to perform different tasks: to approach physical activity and avoid sedentary behavior
(ApSB_AvPA), to approach sedentary behavior and avoid physical activity (ApPA_AvSB) and a
control task. The dependent variables are measures of impulsive approach toward physical
activity (iapa) or sedentary behavior (iasb). See Cheval, Sarrazin, Pelletier, and Friese
(2016) for details on the experiment. We will analyze here only a part of the data.

R> jpah2016$bmic <- scale(jpah2016$bmi, scale = FALSE)

We perform the permutation tests by running the aovperm function. The within subject
factors should be written using + Error(...) similarly to the aov function from the stats

package:

R> mod_jpah2016 <- aovperm(iapa ~ bmic * condition * time + Error(id/(time)),

+ data = jpah2016, method = "Rd_kheradPajouh_renaud")

The results are shown in an ANOVA table by printing the object:
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Figure 3: The permutation distributions of the F statistics for the effects bmic, condition
and bmic:condition. The vertical lines indicate the observed statistics.

R> mod_jpah2016

Permutation test using Rd_kheradPajouh_renaud to handle nuisance

variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd

bmic 18.6817 1 106883.5 13 18.6817 8221.808

condition 27878.1976 2 106883.5 13 13939.0988 8221.808

bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808

time 268.8368 1 167304.9 13 268.8368 12869.607

bmic:time 366.4888 1 167304.9 13 366.4888 12869.607

condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607

bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)

bmic 0.0023 0.9627 0.9646

condition 1.6954 0.2217 0.2180

bmic:condition 5.4269 0.0193 0.0230

time 0.0209 0.8873 0.8808

bmic:time 0.0285 0.8686 0.8594

condition:time 0.8221 0.4611 0.4520

bmic:condition:time 1.1323 0.3521 0.3412

This analysis reveals a significant p value for the effect of the interaction bmic:condition

with a statistic F = 5.4269 , which lead to a permutation p value p = 0.023 not far from the
parametric one. For this example, the permutation tests backs the parametric analysis. The
permutation distributions can be viewed using the plot function like in Figure 3.

R> plot(mod_jpah2016, effect = c("bmic", "condition", "bmic:condition"))
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Table 3: Variables in the attentionshifting_design dataset.

Variable name Description Levels

id number of identification 15 subjects
visibility time that the image is shown 16ms 166ms

emotion emotion of the shown faces angry, neutral
direction position of the faces on the screen left, right
laterality_id measure of the laterality of the subjects scale from 25 to 100
age age of the subjects from 18 to 25
sex sex of the subjects male, female
STAIS_state state anxiety score of the subjects
STAIS_trait trait anxiety score of the subjects

6.3. EEG experiment in attention shifting

attentionshifting_signal and attentionshifting_design are data provided in the per-

muco package. They come from an EEG recording of 15 participants watching images of either
neutral or angry faces (Tipura, Renaud, and Pegna 2019). Those faces were shown at a differ-
ent visibility: subliminal (16ms) and supraliminal (166ms) and were displayed to the left or to
the right of a screen. The recording is at 1024Hz for 800ms. Time 0 is when the image appears
(event-related potential or ERP). The attentionshifting_signal dataset contains the ERP
of the electrode O1. The design of experiment is given in the attentionshifting_design

dataset along with the laterality, sex, age, and 2 measures of anxiety of each subjects, see
Table 3.

As almost any ERP experiment, the data is designed for a repeated measures ANOVA. Us-
ing the permuco package, we test each time points of the ERP for the main effects and the
interactions of the variables visibility, emotion and direction while controlling for the
FWER. We perform F tests using a threshold at the 95% quantile, the sum as a cluster-
mass statistics and 5000 permutations. We handle nuisance variables with the method
Rd_kheradPajouh_renaud:

R> electrod_O1 <-

+ clusterlm(attentionshifting_signal ~ visibility * emotion * direction

+ + Error(id/(visibility * emotion * direction)),

+ data = attentionshifting_design)

The plotmethod produced a graphical representation of the tests that allows us to see quickly
the significant time frames corrected by clustermass. The results are shown in Figure 4.

R> plot(electrod_O1)

Only one significant result appears for the main effect of visibility. This cluster is corrected
using the clustermass method. The summary of the clusterlm object gives more informa-
tion about all clusters for the main effect of visibility, whether they are driving the significant
effect or not:
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fisher statistic : clustermass correction

Figure 4: The plot method on a clusterlm object displays the observed statistics of the
three main effects and their interactions. The dotted horizontal line represents the threshold
which is set by default to the 95% percentile of the statistic. For this dataset, one cluster is
significant for the main effect of visibility using the clustermass method, as shown by the
red part. The summary method gives more details.

R> summary(electrod_O1)$visibility

Effect: visibility.

Statistic: fisher(1, 14).

Permutation Method: Rd_kheradPajouh_renaud.

Number of Dependant Variables: 819.

Number of Permutations: 5000.

Multiple Comparisons Procedure: clustermass.

Threshold: 4.60011.

Mass Function: the sum.

Table of clusters.

start end cluster mass P(>mass)

1 142 142 4.634852 0.5048

2 332 462 3559.149739 0.0018

3 499 514 85.019645 0.4060

4 596 632 234.877913 0.2290

5 711 738 191.576178 0.2680

There is a significant difference between the two levels of visibility. This difference is driven by
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one cluster that appears between the measures 332 and 462 which correspond to the 123.7ms
and 250.9ms after the event. Its cluster-mass statistic is 3559.1 with an associated p-value of
0.0018. The threshold is set to 4.60011 which is the 95% percentile of the F statistic. If we
want to use other multiple comparisons procedures, we use multcomp argument:

R> full_electrod_O1 <-

+ clusterlm(attentionshifting_signal ~ visibility * emotion * direction

+ + Error(id/(visibility * emotion * direction)),

+ data = attentionshifting_design, P = electrod_O1$P

+ method = "Rde_kheradPajouh_renaud", multcomp = c("troendle",

+ "tfce", "clustermass", "bonferroni", "holm", "benjaminin_hochberg"))

Note that we retrieve the very same permutations as previous model by using the P argument.
The computation time for those tests is reasonably low: it takes less than 12 minutes on a
desktop computer (i7 3770CPU 3.4GHz, 8Go RAM) to compute the 7 permutation tests with
all the multiple comparisons procedures available. To see quickly the results of the threshold-
free cluster-enhancement procedure, we set the multcomp argument of plot to "tfce" as
shown in Figure 5.

R> plot(full_electrod_O1, multcomp = "tfce", enhanced_stat = TRUE)

The TFCE procedure gets approximately a similar effect. However the time-points around
400 (190 ms) are not part of significant effect. If the curves in the TFCE plot happen to to
show some small steps (which is not the case in Figure 5) it may be because of a small number
of terms in the approximation of the integral of the tfce statistics of Equation 13. In that
case it would be reasonable to increase the value of the parameter ndh.

Finally, to be able to interpret individually each time-point, we can use the troendle multiple
comparisons procedure whose results are visualized by plotting the full_electrod_O1 object.
A similar period is detected for the main effect of visibility.

R> plot(full_electrod_O1, multcomp = "troendle")

To interpret individually each time-point in Figure 6, we extract the significant time-points
(with an α level of 5%) using the summary method, setting the multcomp parameter to
"troendle". We find that the main effect of visibility begin at 130.6 ms after the event.
However, the significant time-points for the interaction visibility:emotion are between
100.2 ms and 96.3 ms before the event, which are obviously type I errors.

R> summary(full_electrod_O1, multcomp = "troendle")$visibility

Effect: visibility.

Statistic: fisher(1, 14).

Permutation Method: Rde_kheradPajouh_renaud.

Number of Dependant Variables: 819.

Number of Permutations: 5000.

Multiple Comparisons Procedure: troendle.
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Figure 5: Setting the multcomp argument to "tfce" in the plot function will display the
TFCE p values. The argument enhanced_stat = TRUE shows the TFCE statistics us of
Equation 13.

Table of pseudo-clusters.

start end P(>)

1 1 338 n.s.

2 339 385 sign

3 386 413 n.s.

4 414 455 sign

5 456 819 n.s.

7. Conclusion

This article presents recent methodological advances in permutations tests and their imple-
mentation in the permuco package. Hypotheses in linear models framework or repeated
measures ANOVA are tested using several methods to handle nuisance variables. Moreover
permutations tests can solve the multiple comparisons problem and control the FWER trough
cluster-mass tests or TFCE, and the clusterlm function implements those procedures for the
analysis of signals, like EEG data. Section 6 illustrates some real data example of tests that
can be performed for regression, repeated measures ANCOVA and ERP signals comparison.

We hope that further developments of permuco expand cluster-mass tests to multidimensional
adjacency (space and time) to handle full scalp ERP tests that control the FWER over
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Figure 6: Setting the multcomp to "troendle" will display the troendle correction which
allows an interpretation of each time-point individually.

all electrodes. An early version of the functions are already available in the the following
repository: https://github.com/jaromilfrossard/clustergraph. Another evolution will
concern permutation procedures for mixed effects models to allows researchers to perform
tests in models containing participants and stimuli specific random effects. Indeed, we plan
to include in permuco the re-sampling test presented by Bürki, Frossard, and Renaud (2018)
as they show that, first, using F statistic (by averaging over the stimuli) in combination with
cluster-mass procedure increases the FWER and, secondely, that a re-sampling method based
on the quasi-F statistic (Clark 1973, Raaijmakers, Schrijnemakers, and Gremmen (1999))
keeps it much closer to the nominal level of 5%.
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A. Comparisons of existing packages

A.1. ANOVA and ANCOVA

R> install.packages("lmPerm")

R> install.packages("flip")

R> install.packages("GFD")

R> library("lmPerm")

R> library("flip")

R> library("GFD")

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = FALSE)

R> contrasts(emergencycost$sex) <- contr.sum

R> contrasts(emergencycost$insurance) <- contr.sum

R> X <- model.matrix( ~ sex+insurance, data = emergencycost)[, -1]

R> colnames(X) <- c("sex_num", "insurance_num")

R> emergencycost <- data.frame(emergencycost, X)

R> anova_permuco <- aovperm(cost ~ sex*insurance, data = emergencycost)

R> anova_GFD <- GFD(cost ~ sex*insurance, data = emergencycost,

+ CI.method = "perm", nperm = 5000)

R> ancova_permuco <- aovperm(cost ~ LOSc*sex*insurance, data = emergencycost,

+ method = "huh_jhun")

R> ancova_flip <- flip(cost ~1, X = ~sex_num, Z = ~LOSc*insurance_num*sex_num

+ - sex_num, data = emergencycost, statTest = "ANOVA", perms = 5000)

R> ancova_lmPerm <- aovp(cost ~ LOS*sex*insurance, data = emergencycost,

+ seqs = FALSE, nCycle = 1)

R> anova_permuco

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

5000 permutations.

SS df F parametric P(>F)

sex 60470803 1 0.7193 0.3975

insurance 598973609 1 7.1249 0.0083

sex:insurance 334349436 1 3.9771 0.0477

Residuals 14459666504 172

permutation P(>F)

sex 0.3978

insurance 0.0120

sex:insurance 0.0508

Residuals
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R> anova_GFD

Call:

cost ~ sex * insurance

Wald-Type Statistic (WTS):

Test statistic df p-value p-value WTPS

sex 0.6397413 1 0.42380448 0.4662

insurance 6.3367469 1 0.01182616 0.0584

sex:insurance 3.5371972 1 0.06000678 0.0730

ANOVA-Type Statistic (ATS):

Test statistic df1 df2 p-value

sex 0.6397413 1 5.743756 0.4556003

insurance 6.3367469 1 5.743756 0.0471947

sex:insurance 3.5371972 1 5.743756 0.1112178

R> ancova_permuco

Anova Table

Permutation test using huh_jhun to handle nuisance variables and

5000, 5000, 5000, 5000, 5000, 5000, 5000 permutations.

SS df F parametric P(>F)

LOSc 2162110751 1 483.4422 0.0000

sex 14630732 1 3.2714 0.0723

insurance 618366 1 0.1383 0.7105

LOSc:sex 8241073 1 1.8427 0.1765

LOSc:insurance 29107536 1 6.5084 0.0116

sex:insurance 123892 1 0.0277 0.8680

LOSc:sex:insurance 13457877 1 3.0091 0.0846

Residuals 751350616 168

permutation P(>F)

LOSc 0.0002

sex 0.0736

insurance 0.7224

LOSc:sex 0.1756

LOSc:insurance 0.0102

sex:insurance 0.8704

LOSc:sex:insurance 0.0820

Residuals
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R> summary(ancova_lmPerm)

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

LOS 1 2162110751 2162110751 5000 <0.0000000000000002

sex 1 14630732 14630732 4159 0.0236

LOS:sex 1 8241073 8241073 1525 0.0616

insurance 1 618366 618366 94 0.5213

LOS:insurance 1 29107536 29107536 5000 0.0010

sex:insurance 1 123892 123892 80 0.5625

LOS:sex:insurance 1 13457877 13457877 2238 0.0429

Residuals 168 751350616 4472325

LOS ***

sex *

LOS:sex .

insurance

LOS:insurance ***

sex:insurance

LOS:sex:insurance *

Residuals

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

R> ancova_flip

Test Stat tail p-value

cost F 3.271 > 0.0724

A.2. Repeated measures ANOVA

R> jpah2016$id = as.factor(jpah2016$id)

R> jpah2016$bmic = scale(jpah2016$bmi,scale = FALSE)

R> contrasts(jpah2016$time) <- contr.sum

R> contrasts(jpah2016$condition) <- contr.sum

R> rancova_permuco <- aovperm(iapa ~ bmic*condition*time + Error(id/(time)),

+ data = jpah2016)

R> rancova_lmPerm <- aovp(iapa ~ bmic*condition*time + Error(id/(time)),

+ data = jpah2016, nCycle = 1, seqs = FALSE)
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R> rancova_permuco

Permutation test using Rd_kheradPajouh_renaud to handle nuisance

variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd

bmic 18.6817 1 106883.5 13 18.6817 8221.808

condition 27878.1976 2 106883.5 13 13939.0988 8221.808

bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808

time 268.8368 1 167304.9 13 268.8368 12869.607

bmic:time 366.4888 1 167304.9 13 366.4888 12869.607

condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607

bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)

bmic 0.0023 0.9627 0.9620

condition 1.6954 0.2217 0.2148

bmic:condition 5.4269 0.0193 0.0238

time 0.0209 0.8873 0.8764

bmic:time 0.0285 0.8686 0.8562

condition:time 0.8221 0.4611 0.4328

bmic:condition:time 1.1323 0.3521 0.3534

R> summary(rancova_lmPerm)

Error: id

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

bmic 1 3270 3270 51 0.9412

condition 2 20000 10000 840 0.3155

bmic:condition 2 89238 44619 5000 0.0196 *

Residuals 13 106884 8222

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Error: id:time

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

time 1 1047 1047.4 51 1.0000

bmic:time 1 31 31.5 51 0.9216

condition:time 2 29793 14896.4 240 0.4500

bmic:condition:time 2 29146 14572.9 345 0.4406

Residuals 13 167305 12869.6
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