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Abstract

Hypothesis Error (HE) plots, introduced in Friendly (2007), provide graphical meth-
ods to visualize hypothesis tests in multivariate linear models, by displaying hypothesis
and error covariation as ellipsoids and providing visual representations of effect size and
significance. These methods are implemented in the heplots package for R (Fox, Friendly,
and Monette 2007) and SAS (Friendly 2006), and apply generally to designs with fixed-
effect factors (MANOVA), quantitative regressors (multivariate multiple regression) and
combined cases (MANCOVA).

This paper describes the extension of these methods to repeated measures designs in
which the multivariate responses represent the outcomes on one or more “within-subject”
factors. This extension is illustrated using the heplots package for R. Examples describe
one-sample profile analysis, designs with multiple between-S and within-S factors, and
doubly-multivariate designs, with multivariate responses observed on multiple occasions.

Keywords: data ellipse, HE plot, HE plot matrix, profile analysis, repeated measures, MANOVA,
doubly-multivariate designs, mixed models.

1. Introduction

Hypothesis Error (HE) plots, introduced in Friendly (2007), provide graphical methods to
visualize hypothesis tests in multivariate linear models, by displaying hypothesis and error co-
variation as ellipsoids and providing visual representations of effect size and significance. The
heplots package (Fox et al. 2007) for R (R Development Core Team 2010) implements these
methods for the general class of the multivariate linear model (MVLM) including fixed-effect
factors (MANOVA), quantitative regressors (multivariate multiple regression (MMREG)) and
combined cases (MANCOVA). Here, we describe the extension of these methods to repeated
measures designs in which the multivariate responses represent the outcomes on one or more
“within-subject” factors. This vignette also appears in the Journal of Statistical Software

(Friendly 2010).

1.1. Multivariate linear models: Notation

To set notation, we express the MVLM as

Y
(n×p)

= X
(n×q)

B
(q×p)

+ U
(n×p)

, (1)

where, Y ≡ (y1,y2, . . . ,yp) is the matrix of responses for n subjects on p variables, X is
the design matrix for q regressors, B is the q × p matrix of regression coefficients or model
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parameters and U is the n× p matrix of errors, with vec(U) ∼ Np(0, In⊗Σ), where ⊗ is the
Kronecker product.

A convenient feature of the MVLM for general multivariate responses is that all tests of linear
hypotheses (for null effects) can be represented in the form of a general linear test,

H0 : L
(h×q)

B
(q×p)

= 0
(h×p)

, (2)

where L is a matrix of constants whose rows specify h linear combinations or contrasts of
the parameters to be tested simultaneously by a multivariate test. In R all such tests can be
carried out using the functions Anova() and linearHypothesis() in the car package.1

For any such hypothesis of the form Eqn. (2), the analogs of the univariate sums of squares
for hypothesis (SSH) and error (SSE) are the p× p sum of squares and crossproducts (SSP)
matrices given by (Timm 1975, Ch. 3,5):

H ≡ SSPH = (LB̂)T [L(XTX)−LT]−1 (LB̂) , (3)

and

E ≡ SSPE = Y TY − B̂T(XTX)B̂ = ÛTÛ , (4)

where Û = Y −XB̂ is the matrix of residuals. Multivariate test statistics (Wilks’ Λ, Pillai
trace, Hotelling-Lawley trace, Roy’s maximum root) for testing Eqn. (2) are based on the
s = min(p, h) non-zero latent roots of HE−1 and attempt to capture how “large” H is,
relative to E in s dimensions. All of these statistics have transformations to F statistics
giving either exact or approximate null hypothesis F distributions. The corresponding latent
vectors give a set of s orthogonal linear combinations of the responses that produce maximal
univariate F statistics for the hypothesis in Eqn. (2); we refer to these as the canonical
discriminant dimensions.

In a univariate, fixed-effects linear model, it is common to provide F tests for each term in
the model, summarized in an analysis-of-variance (ANOVA) table. The hypothesis sums of
squares, SSH , for these tests can be expressed as differences in the error sums of squares, SSE ,
for nested models. For example, dropping each term in the model in turn and contrasting
the resulting residual sum of squares with that for the full model produces so-called Type-III
tests; adding terms to the model sequentially produces so-called Type-I tests; and testing each
term after all terms in the model with the exception of those to which it is marginal produces
so-called Type-II tests. Closely analogous MANOVA tables can be formed similarly by taking
differences in error sum of squares and products matrices (E) for such nested models. Type I
tests are sensible only in special circumstances; in balanced designs, Type II and Type III tests
are equivalent. Regardless, the methods illustrated in this paper apply to any multivariate
linear hypothesis.

1.2. Data ellipses and ellipsoids

In what follows, we make extensive use of ellipses (or ellipsoids in 3+D) to represent joint
variation among two or more variables, so we define this here. The data ellipse (or covariance

1 Both the car package and the heplots package are being actively developed. Except where noted, all results
in this paper were produced using the old-stable versions on CRAN, car 1.2-16 (2009/10/10) and heplots

0.8-11 (2009-12-08) running under R version 3.4.1 (2017-06-30).
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ellipse), described by Dempster (1969) and Monette (1990), is a device for visualizing the
relationship between two variables, Y1 and Y2. Let D2

M (y) = (y − y)TS−1(y − y) represent
the squared Mahalanobis distance of the point y = (y1, y2)

T from the centroid of the data
y = (Y 1, Y 2)

T. The data ellipse Ec of size c is the set of all points y with D2
M (y) less than or

equal to c2:

Ec(y;S,y) ≡
{
y: (y − y)TS−1(y − y) ≤ c2

}
(5)

Here, S =
∑n

i=1(y − y)T(y − y)/(n− 1) = V̂ar(y) is the sample covariance matrix.

Many properties of the data ellipse hold regardless of the joint distribution of the variables, but
if the variables are bivariate normal, then the data ellipse represents a contour of constant
density in their joint distribution. In this case, D2

M (y) has a large-sample χ2 distribution
with 2 degrees of freedom, and so, for example, taking c2 = χ2

2(0.95) = 5.99 ≈ 6 encloses
approximately 95 percent of the data. Taking c2 = χ2

2(0.68) = 2.28 gives a bivariate analog
of the univariate ±1 standard deviation interval, enclosing approximately 68% of the data.

The generalization of the data ellipse to more than two variables is immediate: Applying
Equation 5 to y = (y1, y2, y3)

T, for example, produces a data ellipsoid in three dimensions.
For pmultivariate-normal variables, selecting c2 = χ2

p(1−α) encloses approximately 100(1−α)
percent of the data.2

1.3. HE plots

The essential idea behind HE plots is that any multivariate hypothesis test Eqn. (2) can be
represented visually by ellipses (or ellipsoids in 3D) which express the size of co-variation
against a multivariate null hypothesis (H) relative to error covariation (E). The multivariate
tests, based on the latent roots of HE−1, are thus translated directly to the sizes of the H

ellipses for various hypotheses, relative to the size of the E ellipse. Moreover, the shape and
orientation of these ellipses show something more– the directions (linear combinations of the
responses) that lead to various effect sizes and significance.

In these plots, the E matrix is first scaled to a covariance matrix (E/dfe = V̂ar(Ui)). The
ellipse drawn (translated to the centroid y of the variables) is thus the data ellipse of the
residuals, reflecting the size and orientation of residual variation. In what follows (by default),
we always show these as “standard” ellipses of 68% coverage. This scaling and translation
also allows the means for levels of the factors to be displayed in the same space, facilitating
interpretation.

The ellipses for H reflect the size and orientation of covariation against the null hypothesis.
They always proportional to the data ellipse of the fitted effects (predicted values) for a given
hypothesized term. In relation to the E ellipse, the H ellipses can be scaled to show either
the effect size or strength of evidence against H0 (significance).

For effect size scaling, each H is divided by dfe to conform to E. The resulting ellipses are
then exactly the data ellipses of the fitted values, and correspond visually to multivariate
analogs of univariate effect size measures (e.g., (ȳ1 − ȳ2)/s where s=within group standard
deviation). That is, the sizes of the H ellipses relative to that of the E reflect the (squared)
differences and correlation of the factor means relative to error covariation.

2 Robust versions of data ellipses (e.g., based on minimum volume ellipsoid (MVE) or minimum covariance
determinant (MCD) estimators of S) are also available, as are small-sample approximations to the enclosing
c
2 radii, but these refinements are outside the scope of this paper.
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For significance scaling, it turns out to be most visually convenient to use Roy’s largest root
test as the test criterion. In this case the H ellipse is scaled to H/(λαdfe) where λα is the
critical value of Roy’s statistic. Using this gives a simple visual test of H0: Roy’s test rejects
H0 at a given α level if and only if the corresponding α-level H ellipse extends anywhere
outside the E ellipse.3 Consequently, when the rank of H = min(p, h) ≤ 2, all significant
effects can be observed directly in 2D HE plots; when rank(H) = 3, some rotation of a 3D
plot will reveal each significant effect as extending somewhere outside the E ellipsoid.

In our R implementation, the basic plotting functions in the heplots package are heplot()
and heplot3d() for mlm objects. These rely heavily on the Anova() and other functions from
the car package (Fox 2009) for computation. For more than three response variables, all
pairwise HE plots can be shown using a pairs() function for mlm objects. Alternatively, the
related candisc package (Friendly and Fox 2009) produces HE plots in canonical discriminant
space. This shows a low-rank 2D (or 3D) view of the effects for a given term in the space
of maximum discrimination, based on the linear combinations of responses which produce
maximally significant test statistics. See Friendly (2007); Fox, Friendly, and Monette (2009)
for details and examples for between-S MANOVA designs, MMREG and MANCOVA models.

2. Repeated measures designs

The framework for the MVLM described above pertains to the situation in which the re-
sponse vectors (rows, yT

i of Yn×p) are iid and the p responses are separate, not necessarily
commensurate variables observed on individual i.

In principle, the MVLM extends quite elegantly to repeated-measure (or within-subject) de-
signs, in which the p responses per individual can represent the factorial combination of one or
more factors that structure the response variables in the same way that the between-individual
design structures the observations. In the multivariate approach to repeated measure data,
the same model Eqn. (1) applies, but hypotheses about between- and within-individual vari-
ation are tested by an extended form of the general linear test Eqn. (2), which becomes

H0 : L
(h×q)

B
(q×p)

M
(p×k)

= 0
(h×k)

, (6)

where M is a matrix of constants whose columns specify k linear combinations or contrasts
among the responses, corresponding to a particular within-individual effect. In this case, the
H and E matrices for testing Eqn. (6) become

H = (LB̂M)T [L(XTX)−LT]−1 (LB̂M) , (7)

and
E = (Y M)T[I − (XTX)−XT] (Y M) . (8)

This may be easily seen to be just the ordinary MVLM applied to the transformed responses
Y M which form the basis for a given within-individual effect. The idea for this approach
to repeated measures through a transformation of the responses was first suggested by Hsu

3Other multivariate tests (Wilks’ Λ, Hotelling-Lawley trace, Pillai trace) also have geometric interpretations
in HE plots (e.g., Wilks’ Λ is the ratio of areas (volumes) of the H and E ellipses (ellipsoids)), but these
statistics do not provide such simple visual comparisons. All HE plots shown in this paper use significance
scaling, based on Roy’s test.
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(1938) and is discussed further by Rencher (1995) and Timm (1980). In what follows, we
refer to hypotheses pertaining to between-individual effects (specified by L) as “between-S”
and hypotheses pertaining to within-individual effects (M) as “within-S.”

Between-S effect tested

M for Within-S effects Intercept L = LA L = LB L = LAB

M = M1 =

(
1 1 1

)T

µ.. A B A:B

M = MC =




1 −1 0

0 1 −1




T

C A:C B:C A:B:C

Table 1: Three-way design: Tests for between- (A, B) and within-S (C) effects are constructed
using various L and M matrices. Table entries give the term actually tested via the general
linear test in Eqn. (6).

In the general case, various L matrices provide contrasts or select the particular coefficients
tested for between-S effects, while variousM matrices specify linear combinations of responses
for the within-S effects. This is illustrated in Table 2 for a three-way design with two between-
S factors (A, B) and one within-S factor (C).

The between-S terms themselves are tested using the unit vector M = (1p), giving a test
based on the sums over the within-S effects. This simply reflects the principle of marginality,
by which effects for any term in a linear model are tested by averaging over all factors not
included in that term. Tests using a matrix M of contrasts for a within-S effect provide tests
of the interactions of that effect with each of the between-S terms. That is, LBM = 0 tests
between-S differences among the responses transformed by M .

For more than one within-S factor, the full M matrices for various within-S terms are gener-
ated as Kronecker products of the one-wayM contrasts with the unit vector (1) of appropriate
size. For example, with c levels of factor C and d of factor D,

MC⊗D = (1c,MC)⊗ (1d,MD)

= (1c ⊗ 1d,1c ⊗MD,MC ⊗ 1d,MC ⊗MD)

= (M1,MD,MC ,MCD) .

(9)

Each of the within-S terms combine with any between-S terms in an obvious way to give an
extended version of Table 2 with additional rows for MD and MCD.

In passing, we note that all software (SAS, SPSS, R, etc.) that handles repeated measure de-
signs through this extension of the MLM effectively works via the general linear test Eqn. (2),
with either implicit or explicit specifications for the L and M matrices involved in testing any
hypothesis for between- or within-S effects. This mathematical elegance is not without cost,
however. The MLM approach does not allow for missing data (a particular problem in lon-
gitudinal designs), and the multivariate test statistics (Wilks’ Λ, etc.) assume the covariance
matrix of U is unstructured. Alternative analysis based on mixed (or hierarchical) models,
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e.g. (Pinheiro and Bates 2000; Verbeke and Molenberghs 2000) are more general in some
ways, but to date visualization methods for this approach remain primitive and the mixed
model analysis does not easily accommodate multivariate responses.

The remainder of the paper illustrates these MLM analyses, shows how they may be performed
in R, and how HE plots can be used to provide visual displays of what is summarized in the
multivariate test statistics. We freely admit that these displays are somewhat novel and
take some getting used to, and so this paper takes a more tutorial tone. We exemplify these
methods in the context of simple, one-sample profile analysis (Section 3), designs with multiple
between- and within-S effects (Section 4), and doubly-multivariate designs (Section 5), where
two or more separate responses (e.g., weight loss and self esteem) are each observed in a
factorial structure over multiple within-S occasions. In Section 6 we describe a simplified
interface for these plots in the development versions of the heplots and car packages. Finally
(Section 7) we compare these methods with visualizations based on the mixed model.

3. One sample profile analysis

The simplest case of a repeated-measures design is illustrated by the data on vocabulary
growth of school children from grade 8 to grade 11, in the data frame VocabGrowth, recording
scores on the vocabulary section of the Cooperative Reading Test for a cohort of 64 students.
(The scores are scaled to a common, but arbitrary origin and unit of measurement, so as to
be comparable over the four grades.) Since these data cover an age range in which physical
growth is beginning to decelerate, it is of interest whether a similar effect occurs in the
acquisition of new vocabulary. Thus, attention here is arguably directed to polynomial trends
in grade: average rate of change (slope, or linear trend) and shape of trajectories (quadratic
and cubic components).

R> some(VocabGrowth,5)

grade8 grade9 grade10 grade11
11 -0.95 0.41 0.21 1.82
42 1.03 2.10 3.88 2.81
49 1.10 2.65 1.72 2.96
56 -2.19 -0.42 1.54 1.16
60 -0.29 2.62 1.60 1.86

A boxplot of these scores (Figure 1) gives an initial view of the data. To do this, we first
reshape the data from wide to long format (i.e., each 4-variate row becomes four rows indexed
by grade). We can see that vocabulary scores increase with age, but the trend of means
appears non-linear.

R> voc <- reshape(VocabGrowth, direction="long", varying=list(grade=1:4), timevar="Grade", v.names=
R> boxplot(Vocabulary ~ Grade, data=voc, col="bisque",

ylab="Vocabulary", main="Vocabulary Growth data")
R> abline(lm(Vocabulary ~ as.numeric(Grade), data=voc), col="red")
R> means <- tapply(voc$Vocabulary, voc$Grade, mean)
R> points(1:4, means, pch=7, col="blue")
R> lines(1:4, means, col="blue", lwd=2)
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Figure 1: Boxplots of Vocabulary score by Grade, with linear regression line (red) and lines
connecting grade means (blue).

The standard univariate and multivariate tests for the differences in vocabulary with grade
can be carried out as follows. First, we fit the basic MVLM with an intercept only on the
right-hand side of the model, since there are no between-S effects. The intercepts estimate
the means at each grade level, µ8, . . . , µ11.

R> (Vocab.mod <- lm(cbind(grade8,grade9,grade10,grade11) ~ 1, data=VocabGrowth))

Call:
lm(formula = cbind(grade8, grade9, grade10, grade11) ~ 1, data = VocabGrowth)

Coefficients:
grade8 grade9 grade10 grade11

(Intercept) 1.14 2.54 2.99 3.47

We could test the multivariate hypothesis that all means are simultaneously zero, µ8 = µ9 =
µ10 = µ11 = 0. This point hypothesis is the simplest case of a multivariate test under Eqn. (2),
with L = I.

R> (Vocab.aov0 <- Anova(Vocab.mod, type="III"))

Type III MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.8577 90.38 4 60 <2e-16 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1
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This hypothesis tests that the vocabulary means are all at the arbitrary origin for the scale.
Often this test is not of direct interest, but it serves to illustrate the H and E matrices
involved in any multivariate test, their representation by HE plots, and how we can extend
these plots to the repeated measures case.

The H and E matrices can be printed with summary(Vocab.aov0), or extracted from the
Anova.mlm object. In this case, H is simply nyyT and E is the sum of squares and crossprod-
ucts of deviations from the column means,

∑n
i=1(yi − y)T(yi − y).

R> Vocab.aov0$SSP # H matrix

$❵(Intercept)❵
grade8 grade9 grade10 grade11

grade8 82.810 185.037 217.547 252.525
grade9 185.037 413.461 486.104 564.262
grade10 217.547 486.104 571.509 663.398
grade11 252.525 564.262 663.398 770.063

R> Vocab.aov0$SSPE # E matrix

grade8 grade9 grade10 grade11
grade8 225.086 201.133 223.843 179.950
grade9 201.133 273.850 223.515 191.729
grade10 223.843 223.515 296.321 213.249
grade11 179.950 191.729 213.249 233.848

The HE plot for the Vocab.mod model shows the test for the (Intercept) term (all means =
0). To emphasize that the test is assessing the (squared) distance of ȳ from 0, in relation to
the covariation of observations around the grand mean, we define a simple function to mark
the point hypothesis H0 = (0, 0).

R> mark.H0 <- function(x=0, y=0, cex=2, pch=19, col="green3", lty=2, pos=2) {
points(x,y, cex=cex, col=col, pch=pch)
text(x,y, expression(H[0]), col=col, pos=pos)
if (lty>0) abline(h=y, col=col, lty=lty)
if (lty>0) abline(v=x, col=col, lty=lty)

}

Here we show the HE plot for the grade8 and grade9 variables in Figure 2. The E ellipse
reflects the positive correlation of vocabulary scores across these two grades, but also shows
that variability is greater in Grade 8 than in Grade 9. Its position relative to (0,0) indicates
that both means are positive, with a larger mean at Grade 9 than Grade 8.

R> heplot(Vocab.mod, terms="(Intercept)", type="III")
R> mark.H0(0,0)
R> title(expression(paste("Multivariate test of ", H[0], " : ", bold(mu)==0)))

The H ellipse plots as a degenerate line because the H matrix has rank 1 (1 df for the
MANOVA test of the Intercept). The fact that the H ellipse extends outside the E ellipse
(anywhere) signals that this H0 is clearly rejected (for some linear combination of the response
variables). Moreover, the projections of the H and E ellipses on the grade8 and grade9 axes,
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Figure 2: HE plot for Vocabulary data, for the MANOVA test of H0 : µy = 0. The size of
the (degenerate) ellipse for the intercept term relative to that for Error gives the strength of
evidence for the difference between the sample means (marked by +) and the means under
H0 (marked by the cross-hairs and green dot). The projection of this H ellipse outside the
E ellipse signals that this H0 is clearly rejected.

showing H widely outside E, signals that the corresponding univariate hypotheses, µ8 = 0
and µ9 = 0 would also be rejected.

3.1. Testing within-S effects

For the Anova() function, the model for within-S effects— giving rise the M matrices in
Eqn. (6)— is specified through the arguments idata (a data frame giving the factor(s) used
in the intra-subject model) and idesign (a model formula specifying the intra-subject design).
That is, if Z = [idata], the M matrices for different intra-subject terms are generated from
columns of Z indexed by the terms in idesign, with factors and interactions expanded
expanded to contrasts in the same way that the design matrix X is generated from the
between-S design formula.

Thus, to test the within-S effect of grade, we need to construct a grade variable for the levels
of grade and use this as a model formula, idesign=~grade to specify the within-S design in
the call to Anova.

R> idata <-data.frame(grade=ordered(8:11))
R> (Vocab.aov <- Anova(Vocab.mod, idata=idata, idesign=~grade, type="III"))
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Type III Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.6529 118.50 1 63 4.12e-16 ***
grade 1 0.8258 96.38 3 61 < 2e-16 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

As shown in Table 2, any such within-S test is effectively carried out using a transformation
Y to Y M , where the columns of M provide contrasts among the grades. For the overall

test of grade, any set of 3 linearly independent contrasts will give the same test statistics,
though, of course the interpretation of the parameters will differ. Specifying grade as an
ordered factor (grade=ordered(8:11)) will cause Anova() to use the polynomial contrasts
shown in Mpoly below.

Mpoly =




−3 1 −1
−1 −1 3
1 −1 −3
3 1 1


 Mfirst =




−1 −1 −1
1 0 0
0 1 0
0 0 1


 Mlast =




1 0 0
0 1 0
0 0 1

−1 −1 −1




Alternatively,Mfirst would test the gains in vocabulary between grade 8 (baseline) and each of
grades 9–11, while Mlast would test the difference between each of grades 8–10 from grade 11.
(In R, these contrasts are constructed with M.first <- contr.sum(factor(11:8))[4:1,3:1],
and M.last <- contr.sum(factor(8:11)) respectively.) In all cases, the hypothesis of no
difference among the means across grade is transformed to an equivalent multivariate point
hypothesis, Mµy = 0, such as we visualized in Figure 2.

Correspondingly, the HE plot for the effect of grade can be constructed as follows. For
expository purposes we explicitly transform Y to Y M , where the columns of M provide
contrasts among the grades reflecting linear, quadratic and cubic trends using Mpoly.

Using Mpoly, the MANOVA test for the grade effect is then testing H0 : Mµy = 0 ↔ µLin =
µQuad = µCubic = 0. That is, the means across grades 8–11 are equal if and only if their
linear, quadratic and cubic trends are simultaneously zero.

R> trends <- as.matrix(VocabGrowth) %*% poly(8:11, degree=3)
R> colnames(trends)<- c("Linear", "Quad", "Cubic")
R> # test all trend means = 0 == Grade effect
R> within.mod <- lm(trends ~ 1)
R> Anova(within.mod, type="III")

Type III MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.8258 96.38 3 61 <2e-16 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

It is easily seen that the test of the (Intercept) term in within.mod is identical to the test
of grade in Vocab.mod at the beginning of this subsection.

We can show this test visually as follows. Figure 3(a) shows a scatterplot of the transformed
linear and quadratic trend scores, overlayed with a 68% data ellipse. Figure 3(b) is the
corresponding HE plot for these two variables. Thus, we can see that theE ellipse is simply the
data ellipse of the transformed vocabulary scores; its orientation indicates a slight tendency
for those with greater slopes (gain in vocabulary) to have greater curvatures (leveling off
earlier). Figure 3 is produced as follows:
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R> op <- par(mfrow=c(1,2))
R> data.ellipse(trends[,1:2], xlim=c(-4,8), ylim=c(-3,3), levels=0.68,

main="(a) Data ellipse ")
R> mark.H0(0,0)
R> heplot(within.mod, terms="(Intercept)", col=c("red", "blue"), type="III",

term.labels="Grade", , xlim=c(-4,8), ylim=c(-3,3),
main="(b) HE plot for Grade effect")

R> mark.H0(0,0)
R> par(op)
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Figure 3: Plots of linear and quadratic trend scores for the Vocabulary data. (a) Scatterplot
with 68% data ellipse; (b) HE plot for the effect of Grade. As in Figure 2, the size of the H

ellipse for Grade relative to the E ellipse shows the strength of evidence against H0.

We interpret Figure 3(b) as follows, bearing in mind that we are looking at the data in the
transformed space (Y M) of the linear (slopes) and quadratic (curvatures) of the original
data (Y ). The mean slope is positive while the mean quadratic trend is negative. That is,
overall, vocabulary increases with Grade, but at a decreasing rate. The H ellipse plots as a
degenerate line because the H matrix has rank 1 (1 df for the MANOVA test of the Intercept).
Its projection outside the E ellipse shows a highly significant rejection of the hypothesis of
equal means over Grade.

In such simple cases, traditional plots (boxplots, or plots of means with error bars) are easier
to interpret. HE plots gain advantages in more complex designs (two or more between- or
within-S factors, multiple responses), where they provide visual summaries of the information
used in the multivariate hypothesis tests.

4. Between- and within-S effects

When there are both within- and between-S effects, the multivariate and univariate hypotheses
tests can all be obtained together using Anova() with the idata and idesign specifying the
within-S levels and the within-S design, as shown above. linearHypothesis() can be used
to test arbitrary contrasts in the within- or between- effects.
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However, to explain the visualization of these tests for within-S effects and their interactions
using heplot() and related methods it is again convenient to explicitly transform Y 7→ Y M

for a given set of within-S contrasts, in the same way as done for the VocabGrowth data. See
Section 6 for simplified code producing these HE plots directly, without the need for explicit
transformation.

To illustrate, we use the data from O’Brien and Kaiser (1985) contained in the data frame
OBrienKaiser in the car package. The data are from an imaginary study in which 16 female
and male subjects, who are divided into three treatments, are measured at a pretest, posttest,
and a follow-up session; during each session, they are measured at five occasions at intervals
of one hour. The design, therefore, has two between-subject and two within-subject factors.

For simplicity here, we initially collapse over the five occasions, and consider just the within-S
effect of session, called session in the analysis below.

R> library("car") # for OBrienKaiser data
R> # simplified analysis of OBrienKaiser data, collapsing over hour
R> OBK <- OBrienKaiser
R> OBK$pre <- rowMeans(OBK[,3:7])
R> OBK$post <- rowMeans(OBK[,8:12])
R> OBK$fup <- rowMeans(OBK[,13:17])
R> # remove separate hour scores
R> OBK <- OBK[,-(3:17)]

Note that the between-S design is unbalanced (so tests based on Type II sum of squares and
crossproducts are preferred, because they conform to the principle of marginality).

R> table(OBK$gender, OBK$treatment)

control A B
F 2 2 4
M 3 2 3

The factors gender and treatment were specified with the following contrasts, Lgender, and
Ltreatment, shown below. The contrasts for treatment are nested (Helmert) contrasts testing
a comparison of the control group with the average of treatments A and B (treatment1) and
the difference between treatments A and B (treatment2).

R> contrasts(OBK$gender)

[,1]
F 1
M -1

R> contrasts(OBK$treatment)

[,1] [,2]
control -2 0
A 1 -1
B 1 1

We first fit the general MANOVA model for the three repeated measures in relation to the
between-S factors. As before, this just establishes the model for the between-S effects.
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R> # MANOVA model
R> mod.OBK <- lm(cbind(pre, post, fup) ~ treatment*gender, data=OBK)
R> mod.OBK

Call:
lm(formula = cbind(pre, post, fup) ~ treatment * gender, data = OBK)

Coefficients:
pre post fup

(Intercept) 4.4722 5.7361 6.2917
treatment1 0.1111 0.8264 0.9792
treatment2 -0.4167 0.0625 0.0208
gender1 -0.4722 -0.6528 -0.7083
treatment1:gender1 -0.3611 -0.5347 -0.1875
treatment2:gender1 0.6667 0.8125 0.8542

If we regarded the repeated measure effect of session as equally spaced, we could simply
use polynomial contrasts to examine linear (slope) and quadratic (curvature) effects of time.
Here, it makes more sense to use profile contrasts, testing (post - pre) and (fup - post).

R> session <- ordered(c("pretest", "posttest", "followup"),
levels=c("pretest", "posttest", "followup"))

R> contrasts(session) <- matrix(c(-1, 1, 0,
0, -1, 1), ncol=2)

R> session

[1] pretest posttest followup
attr(,"contrasts")

[,1] [,2]
pretest -1 0
posttest 1 -1
followup 0 1
Levels: pretest < posttest < followup

R> idata <- data.frame(session)

The multivariate tests for all between- and within- effects are then calculated as follows:

R> # Multivariate tests for repeated measures
R> aov.OBK <- Anova(mod.OBK, idata=idata, idesign=~session, test="Roy")
R> aov.OBK

Type II Repeated Measures MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 31.83 318.3 1 10 6.53e-09 ***
treatment 2 0.93 4.6 2 10 0.037687 *
gender 1 0.26 2.6 1 10 0.140974
treatment:gender 2 0.57 2.9 2 10 0.104469
session 1 5.69 25.6 2 9 0.000193 ***
treatment:session 2 2.13 10.7 2 10 0.003309 **
gender:session 1 0.05 0.2 2 9 0.819997
treatment:gender:session 2 0.42 2.1 2 10 0.175303
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1
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It is useful to point out here that the default print methods for Anova.mlm objects, as shown
above, gives an optimally compact summary for all between- and within-S effects, using a
given test statistic, yet all details and other test statistics are available using the summary

method.4 For example, using summary(aov.OBK) as shown below, we can display all the
multivariate tests together with the H and E matrices, and/or all the univariate tests for
the traditional univariate mixed model, under the assumption of sphericity and with Geiser-
Greenhouse and Huhyn-Feldt corrected F tests. To conserve space in this article the results
are not shown here.

R> # All multivariate tests
R> summary(aov.OBK, univariate=FALSE)
R> # Univariate tests for repeated measures
R> summary(aov.OBK, multivariate=FALSE)

OK, now its time to understand the nature of these effects. Ordinarily, from a data-analytic
point of view, I would show traditional plots of means and other measures (as in Figure 1)
or their generalizations in effect plots (Fox 1987; Fox and Hong 2009). But I’m not going to
do that here. Instead, I’d like for you to understand how HE plots provide a compact visual
summary of an MLM, mirroring the tabular presentation from Anova(mod.OBK) above, but
which also reveals the nature of effects. Here, you have to bear in mind that between-S effects
are displayed most naturally in the space of the response variables, while within-S effects are
most easily seen in the contrast space of transformed responses (Y M).

HE plots for between-S effects can be displayed for any pair of responses with heplot().
Figure 4 shows this for pre and post. By default, H ellipses for all model terms (exclud-
ing the intercept) are displayed. Additional MLM tests can also be displayed using the
hypotheses argument; here we specify the two contrasts for the treatment effect shown
above as contrasts(OBK$treatment).

R> # HE plots for Between-S effects
R> heplot(mod.OBK, hypotheses=c("treatment1", "treatment2"),

col=c("red", "black", "blue", "brown", "gray40", "gray40"),
hyp.labels=c("(A,B)-Control", "A-B"),
main="Between-S effects and contrasts"

)
R> lines(c(3,7), c(3,7), col="green")

In Figure 4, we see that the treatment effect is significant, and the large vertical extent of
this H ellipse shows this is largely attributable to the differences among groups in the Post
session. Moreover, the main component of the treatment effect is the contrast between the
Control group and groups A & B, which outperform the Control group at Post test. The effect
of gender is not significant, but the HE plot shows that that males are higher than females
at both Pre and Post tests. Likewise, the treatment:gender interaction fails significance,
but the orientation of the H ellipse for this effect can be interpreted as showing that the
differences among the treatment groups are larger for males than for females. Finally, the
line of unit slope shows that for all effects, scores are greater on post than pre.

Using heplot3d(mod.OBK, ...) gives an interactive 3D version of Figure 4 for pre, post,
and fup, that can be rotated and zoomed, or played as an animation.

4 In contrast, SAS proc glm and SPSS General Linear Model provide only more complete, but often
bewildering outputs that still recall the days of Fortran coding in spite of more modern look and feel.
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Figure 4: HE plot for the mod.OBK repeated measures model, showing between-S effects and
contrasts in the space of the pre and post variables. Main effect means of the treatment (A,
B, Control) and gender (M, F) groups are marked by points. Contrasts among the treatment
groups appear as lines labeled at one extreme. The green line of unit slope shows equality of
pre = post.

R> heplot3d(mod.OBK, hypotheses=c("treatment1", "treatment2"),
col=c("pink", "black", "blue", "brown", "gray40", "gray40"),
hyp.labels=c("(A,B)-Control", "A-B")
)

R> # rotate around y axis
R> play3d( rot8y <- spin3d(axis=c(0,1,0)),duration=12 )

This plot is not shown here, but an animated version can be generated from the code included
in the supplementary materials.

Alternatively, all pairwise HE plots for the session means can be shown using pairs() for the
mlm object mod.OBK, with the result shown in Figure 5.

R> pairs(mod.OBK, col=c("red", "black", "blue", "brown"))

Here we see that (a) the treatment effect is largest in the combination of post-test and follow
up; (b) this 2 df test is essentially 1-dimensional in this view, i.e., treatment means at post-test
and follow up are nearly perfectly correlated; (c) the superior performance of males relative
to females, while not significant, holds up over all three sessions.

As before, for expository purposes, HE plots for within-S effects are constructed by trans-
forming Y 7→ Y M , here using the (profile) contrasts for session.
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Figure 5: HE plot for the mod.OBK repeated measures model, showing between-S effects for
all pairs of sessions. The panel in row 2, column 1 is identical to that shown separately in
Figure 4.

R> # Transform to profile contrasts for within-S effects
R> OBK$session.1 <- OBK$post - OBK$pre
R> OBK$session.2 <- OBK$fup - OBK$post
R> mod1.OBK <- lm(cbind(session.1, session.2) ~ treatment*gender, data=OBK)
R> Anova(mod1.OBK, test="Roy", type="III")

Type III MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 4.366 19.645 2 9 0.000521 ***
treatment 2 2.186 10.932 2 10 0.003044 **
gender 1 0.071 0.319 2 9 0.734970
treatment:gender 2 0.417 2.083 2 10 0.175303
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

From the schematic summary in Table 2, with these (or any other) contrasts as Msession,
the tests of the effects contained in treatment*gender in mod1.OBK are identical to the
interactions of these terms with session, as shown above for the full model in aov.OBK. The
(Intercept) term in this model represents the session effect.
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The HE plot for within-S effects (Figure 6) is constructed from the mod1.OBK object as shown
below. The main manipulation done here is to re-label the terms plotted to show each of
them as involving session, as just described.

R> # HE plots for Within-S effects
R> heplot(mod1.OBK,

main="Within-S effects: Session * (Treat*Gender)",
remove.intercept=FALSE, type="III",
xlab="Post-Pre", ylab="Fup-Post",
term.labels=c("session", "treatment:session", "gender:session",

"treatment:gender:session"),
col=c("red", "black", "blue", "brown"),
xlim=c(-2,4), ylim=c(-2,3)

)
R> mark.H0(0,0)
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Figure 6: HE plot for the mod1.OBK model, showing within-S effects in the space of contrasts
among sessions. The point labeled H0 here marks the comparison point for no difference over
session in contrast space.

Figure 6 provides an interpretation of the within-S effects shown in the MANOVA table shown
above for Anova(mod.OBK). We can see that the effects of session and treatment:session

are significant. More importantly, for both of these, but the interaction in particular, the
significance of the effect is more attributable to the post-pre difference than to fup-post.

4.1. Higher-order designs

The scheme described above and the obvious generalization of Table 2 easily accommodates
designs with two or more within-S factors. Any number of between-S factors are handled
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automatically, by the model formula for between-S effects specified in the lm() call, e.g.,
~ treatment * gender.

For example, for the O’Brien-Kaiser data with session and hour as two within-S factors, first
create a data frame, within specifying the values of these factors for the 3× 5 combinations.

R> session <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
levels=c("pretest", "posttest", "followup"))

R> contrasts(session) <- matrix(c(-1, 1, 0,
0, -1, 1), ncol=2)

R> hour <- ordered(rep(1:5, 3))
R> within <- data.frame(session, hour)

The within data frame looks like this:

R> str(within)

✬data.frame✬: 15 obs. of 2 variables:
$ session: Factor w/ 3 levels "pretest","posttest",..: 1 1 1 1 1 2 2 2 2 2 ...
..- attr(*, "contrasts")= num [1:3, 1:2] -1 1 0 0 -1 1
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr "pretest" "posttest" "followup"
.. .. ..$ : NULL
$ hour : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 1 2 3 4 5 1 2 3 4 5 ...

R> within

session hour
1 pretest 1
2 pretest 2
3 pretest 3
4 pretest 4
5 pretest 5
6 posttest 1
7 posttest 2
8 posttest 3
9 posttest 4
10 posttest 5
11 followup 1
12 followup 2
13 followup 3
14 followup 4
15 followup 5

The repeated measures MANOVA analysis can then be carried out as follows:

R> mod.OBK2 <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
post.1, post.2, post.3, post.4, post.5,
fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,

data=OBrienKaiser)
R> (aov.OBK2 <- Anova(mod.OBK2, idata=within, idesign=~session*hour, test="Roy"))

Type II Repeated Measures MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 31.83 318.3 1 10 6.53e-09 ***
treatment 2 0.93 4.6 2 10 0.037687 *
gender 1 0.26 2.6 1 10 0.140974
treatment:gender 2 0.57 2.9 2 10 0.104469
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session 1 5.69 25.6 2 9 0.000193 ***
treatment:session 2 2.13 10.7 2 10 0.003309 **
gender:session 1 0.05 0.2 2 9 0.819997
treatment:gender:session 2 0.42 2.1 2 10 0.175303
hour 1 14.31 25.0 4 7 0.000304 ***
treatment:hour 2 0.23 0.5 4 8 0.758592
gender:hour 1 0.41 0.7 4 7 0.602374
treatment:gender:hour 2 0.71 1.4 4 8 0.308786
session:hour 1 1.22 0.5 8 3 0.832452
treatment:session:hour 2 0.58 0.3 8 4 0.936351
gender:session:hour 1 2.28 0.9 8 3 0.620208
treatment:gender:session:hour 2 0.80 0.4 8 4 0.875598
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Note that the test statistics for treatment, gender, session and all interactions among them
are identical to what was found in the simplified analysis above. Among the effects including
hour, only the main effect is significant here.

The following M matrices, corresponding to profile contrasts for session and polynomial
contrasts for hour are used internally in Anova() in calculating these effects (shown here as
integers, rather than in normalized form).

Msession =




−1 0
1 −1
0 1


 Mhour =




−2 2 −1 1
−1 −1 2 −4
0 −2 0 6
1 −1 −2 −4
2 2 1 1




Tests involving the interaction of session:hour use the Kronecker product, Msession⊗Mhour.

For HE plots, it is necessary to explicitly carry out the transformation of Y 7→ Y Mw, where
Mw conforms to Y and represents the contrasts for the within-S effect. In the present
example, this means that Msession and Mhour are both expanded as Kronecker products with
the unit vector,

Ms = Msession ⊗ 15 ,

Mh = 13 ⊗Mhour .

These calculations in R are shown below:

R> M.session <- matrix(c(-1, 1, 0,
0, -1, 1), ncol=2)

R> rownames(M.session) <-c("pre", "post", "fup")
R> colnames(M.session) <-paste("s", 1:2, sep="")
R> M.hour <- matrix(c(-2, -1, 0, 1, 2,

2, -1, -2, -1, 1,
-1, 2, 0, -2, 1,
1, -4, 6, -4, 1), ncol=4)

R> rownames(M.hour) <- paste("hour", 1:5, sep="")
R> colnames(M.hour) <- c("lin", "quad", "cubic", "4th")
R> M.hour

lin quad cubic 4th
hour1 -2 2 -1 1
hour2 -1 -1 2 -4
hour3 0 -2 0 6
hour4 1 -1 -2 -4
hour5 2 1 1 1
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R> unit <- function(n, prefix="") {
J <-matrix(rep(1, n), ncol=1)
rownames(J) <- paste(prefix, 1:n, sep="")
J

}
R> M.s <- kronecker( M.session, unit(5, "h"), make.dimnames=TRUE)
R> (M.h <- kronecker( unit(3, "s"), M.hour, make.dimnames=TRUE))

:lin :quad :cubic :4th
s1:hour1 -2 2 -1 1
s1:hour2 -1 -1 2 -4
s1:hour3 0 -2 0 6
s1:hour4 1 -1 -2 -4
s1:hour5 2 1 1 1
s2:hour1 -2 2 -1 1
s2:hour2 -1 -1 2 -4
s2:hour3 0 -2 0 6
s2:hour4 1 -1 -2 -4
s2:hour5 2 1 1 1
s3:hour1 -2 2 -1 1
s3:hour2 -1 -1 2 -4
s3:hour3 0 -2 0 6
s3:hour4 1 -1 -2 -4
s3:hour5 2 1 1 1

R> M.sh <- kronecker( M.session, M.hour, make.dimnames=TRUE)

Using M.h, we can construct the within-model for all terms involving the hour effect,

R> Y.hour <- as.matrix(OBrienKaiser[,3:17]) %*% M.h
R> mod.OBK2.hour <- lm(Y.hour ~ treatment*gender, data=OBrienKaiser)

We can plot these effects for the linear and quadratic contrasts of hour, representing within-
session slope and curvature. Figure 7 is produced as shown below. As shown by the
Anova(mod.OBK2, ...) above, all interactions with hour are small, and so these appear
wholly contained within the E ellipse. In particular, there are no differences among groups
(treatment × gender) in the slopes or curvatures over hour. For the main effect of hour, the
linear effect is almost exactly zero, while the quadratic effect is huge.

R> labels <- c("hour", paste(c("treatment","gender","treatment:gender"),":hour", sep=""))
R> colors <- c("red", "black", "blue", "brown", "purple")
R> heplot(mod.OBK2.hour, type="III", remove.intercept=FALSE, term.labels=labels, col=colors)
R> mark.H0()

The pairs() function shows these effects (Figure 8) for all contrasts in hour. To reduce clutter,
we only label the hour effect, since all interactions with hour are small and non-significant.
The main additional message here is that the effects of hour are more complex than just the
large quadratic component we saw in Figure 7.

R> pairs(mod.OBK2.hour, type="III", remove.intercept=FALSE, term.labels="hour", col=colors)

5. Doubly-multivariate designs
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Figure 7: HE plot for the mod.OBK2 repeated measures model, showing within-S effects for
linear and quadratic contrasts in hour. As in Figure 6, we are viewing hypothesis and error
variation in the transformed space of the repeated measures contrasts, here given by Mh.

In the designs discussed above the same measure is observed on all occasions. Sometimes,
there are two or more different measures, Y1, Y2, . . . , observed at each occasion, for example
response speed and accuracy. In these cases, researchers often carry out separate repeated
measures analyses for each measure. However the tests of between-S effects and each within-S
effect can also be carried out as multivariate tests of Y1, Y2, . . . simultaneously, and these tests
are often more powerful, particularly when the effects for the different measures are weak,
but correlated.

In the present context, such doubly-multivariate designs can be easily handled in principle by
treating the multiple measures as an additional within-S factor, but using an identity matrix
as the M matrix in forming the linear hypotheses to be tested via Eqn. (6). For example,
with two measures, Y1, Y2 observed on three repeated sessions, the full M matrix for the
design is generated as in Eqn. (9) as

MCM = (1,Msession)⊗ I2 =




1 −1 0
1 1 −1
1 0 1


⊗

(
1 0
0 1

)
. (10)

In R, we can express this as follows, using M.measure to represent Y1, Y2.

R> M.measure <- diag(2)
R> rownames(M.measure)<- c("Y1", "Y2")
R> colnames(M.measure)<- c("Y1", "Y2")
R> kronecker(cbind(1, M.session), M.measure, make.dimnames=TRUE)
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Figure 8: HE plot for the mod.OBK2 repeated measures model, showing within-S effects for
all pairs of contrasts in hour.

:Y1 :Y2 s1:Y1 s1:Y2 s2:Y1 s2:Y2
pre:Y1 1 0 -1 0 0 0
pre:Y2 0 1 0 -1 0 0
post:Y1 1 0 1 0 -1 0
post:Y2 0 1 0 1 0 -1
fup:Y1 1 0 0 0 1 0
fup:Y2 0 1 0 0 0 1

In the result, the first two columns correspond to the within-S Intercept term, and are used
to test all between-S terms for Y1, Y2 simultaneously. The remaining columns correspond to
the session effect for both variables and all interactions with session. In practice, this analysis
must be performed in stages because Anova() does not (yet)5 allow such a doubly-multivariate
design to be specified directly.

5.1. Example: Weight loss and self esteem

To illustrate, we consider the data frame WeightLoss originally from Andrew Ainsworth
(http://www.csun.edu/~ata20315/psy524/main.htm), giving (contrived) data on weight
loss and measures of self esteem after each of three months for 34 individuals, who were
observed in one of three groups: Control, Diet group, Diet + Exercise group. The within-S
factors are thus measure (wl, se) and month (1:3).

R> table(WeightLoss$group)

5The new version of the car package (2.0-0) on CRAN now includes enhanced Anova() and
linearHypothesis() which perform these analyses.

http://www.csun.edu/~ata20315/psy524/main.htm
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Control Diet DietEx
12 12 10

R> some(WeightLoss)

group wl1 wl2 wl3 se1 se2 se3
6 Control 6 5 4 17 18 18
11 Control 4 2 2 16 16 11
12 Control 5 2 1 15 13 16
19 Diet 4 3 1 12 11 14
20 Diet 4 2 1 12 11 11
21 Diet 6 5 3 17 16 19
24 Diet 7 4 3 16 14 18
28 DietEx 3 4 1 16 13 17
29 DietEx 3 5 1 13 13 16
30 DietEx 6 5 2 15 12 18

Because this design is complex, and to facilitate interpretation of the effects we will see in HE
plots, it is helpful to view traditional plots of means with standard errors for both variables.
These plots, shown in Figure 9,6 show that, for all three groups, the amount of weight lost
each month declines, but only the Diet + Exercise maintains substantial weight loss through
month 2. For self esteem, all three groups have a U-shaped pattern over months, and by
month 3, the groups are ordered Control < Diet < Diet + Exercise.
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Figure 9: Means for weight loss and self esteem by group and month. Error bars show ±1
standard error for each mean.

Research interest in the differences among groups would likely be focused on the questions:
(a) Do the two diet groups differ from the control group? (b) Is there an additional effect of
exercise, given diet? These questions may be tested with the (Helmert) contrasts used below
for group, which are labeled group1 and group1 respectively.

R> contrasts(WeightLoss$group) <- matrix(c(-2,1,1, 0, -1, 1),ncol=2)
R> (wl.mod<-lm(cbind(wl1,wl2,wl3,se1,se2,se3)~group, data=WeightLoss))

6 These plots were drawn using plotmeans() in the gplots package (Warnes 2009). The code is not shown,
but is available in the R example code for this paper.
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Call:
lm(formula = cbind(wl1, wl2, wl3, se1, se2, se3) ~ group, data = WeightLoss)

Coefficients:
wl1 wl2 wl3 se1 se2 se3

(Intercept) 5.3444 4.4500 2.1778 14.9278 13.7944 16.2833
group1 0.4222 0.5583 0.0472 0.0889 -0.2694 0.6000
group2 0.4333 1.0917 -0.0250 0.1833 -0.2250 0.7167

A standard between-S MANOVA, ignoring the within-S structure shows a highly significant
group effect.

R> Anova(wl.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

group 2 0.7255 2.562 12 54 0.00924 **
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

As before, it is often useful to examine HE plots for pairs of variables in this analysis before
proceeding to the within-S analysis. For example, Figure 10 shows the test of group and the
two contrasts for weight loss and for self esteem at months 1 and 2.

R> op <- par(mfrow=c(1,2))
R> heplot(wl.mod, hypotheses=c("group1", "group2"),

xlab="Weight Loss, month 1", ylab="Weight Loss, month 2")
R> heplot(wl.mod, hypotheses=c("group1", "group2"), variables=4:5,

xlab="Self Esteem, month 1", ylab="Self Esteem, month 2")
R> par(op)

This is helpful, but doesn’t illuminate the overall group effect for weight loss and self esteem
for all three months, and, of course cannot shed light on any interactions of group with measure
or month. In the following discussion, we will assume that the researcher is particularly
interested in understanding the relation between weight loss and self esteem as it is expressed
in changes over time and differences among groups.

To carry out the doubly-multivariate analysis, we proceed as follows. First, we define the M

matrix for the measures, used in the between-S analysis. We use M = I2 ⊗ 1/3 so that the
resulting scores are the means (not sums) for weight loss and self esteem.

R> measure <- kronecker(diag(2), unit(3, ✬M✬)/3, make.dimnames=TRUE)
R> colnames(measure)<- c(✬WL✬, ✬SE✬)
R> measure

WL SE
:M1 0.333333 0.000000
:M2 0.333333 0.000000
:M3 0.333333 0.000000
:M1 0.000000 0.333333
:M2 0.000000 0.333333
:M3 0.000000 0.333333
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Figure 10: HE plot for the wl.mod MANOVA model, showing between-S effects for weight
loss (left) and self esteem (right) at months 1 and 2.

R> between <- as.matrix(WeightLoss[,-1]) %*% measure
R> between.mod <- lm(between ~ group, data=WeightLoss)
R> Anova(between.mod, test="Roy", type="III")

Type III MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 85.62 1284.3 2 30 < 2e-16 ***
group 2 0.36 5.5 2 31 0.00891 **
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

The HE plot for this component of the analysis (Figure 11) shows a striking effect: Averaging
over all three months, the means for the Control, Diet and DietEx group on both weight loss
and self esteem are highly correlated and in the expected direction. This is something that is
not at all obvious in Figure 9.

R> heplot(between.mod, hypotheses=c("group1", "group2"),
xlab="Weight Loss", ylab="Self Esteem",
col=c("red", "blue", "brown"),
main="Weight Loss & Self Esteem: Group Effect")

Next, for the within-S analysis, we define the M matrix for months, using orthogonal polyno-
mials representing linear and quadratic trends. As before, the test of the (Intercept) term
in these trend scores corresponds to the month effect in the doubly-multivariate model, and
the group effect tests the group × month interaction.

R> month <- kronecker(diag(2), poly(1:3, degree=2), make.dimnames=TRUE)
R> colnames(month)<- c(✬WL1✬, ✬WL2✬, ✬SE1✬, ✬SE2✬)
R> round(month,digits=4)
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Figure 11: HE plot for the between.mod doubly-multivariate design, showing overall between-
S effects for weight loss and self esteem.

WL1 WL2 SE1 SE2
: -0.7071 0.4082 0.0000 0.0000
: 0.0000 -0.8165 0.0000 0.0000
: 0.7071 0.4082 0.0000 0.0000
: 0.0000 0.0000 -0.7071 0.4082
: 0.0000 0.0000 0.0000 -0.8165
: 0.0000 0.0000 0.7071 0.4082

R> trends <- as.matrix(WeightLoss[,-1]) %*% month
R> within.mod <- lm(trends ~ group, data=WeightLoss)
R> Anova(within.mod, test="Roy", type="III")

Type III MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 9.928 69.50 4 28 3.96e-14 ***
group 2 1.772 12.84 4 29 3.91e-06 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

HE plots corresponding to this model (Figure 12) can be produced as follows. The H and E

matrices are all 4× 4, but the H matrices for the month and group:month effects are rank 1
and 2 respectively.

R> op <- par(mfrow=c(1,2))
R> heplot(within.mod, hypotheses=c("group1", "group2"), variables=c(1,3),

xlab="Weight Loss - Linear", ylab="Self Esteem - Linear",
type="III", remove.intercept=FALSE,
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term.labels=c("month", "group:month"),
main="(a) Within-S Linear Effects")

R> mark.H0()
R> heplot(within.mod, hypotheses=c("group1", "group2"), variables=c(2,4),

xlab="Weight Loss - Quadratic", ylab="Self Esteem - Quadratic",
type="III", remove.intercept=FALSE,
term.labels=c("month", "group:month"),
main="(b) Within-S Quadratic Effects")

R> mark.H0()
R> par(op)
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Figure 12: HE plots for the within.mod doubly-multivariate design, showing the effects of
month and the interaction group:month for weight loss vs. self esteem. (a) Linear effects; (b)
Quadratic effects.

Figure 12 shows the plots for the linear and quadratic effects separately for weight loss vs.
self esteem. The plot of linear effects (Figure 12(a)) shows that the effect of month can be
be described as negative slopes for weight loss combined with positive slopes for self esteem–
all groups lose progressively less weight over time, but generally feel better about themselves.
Differences among groups in the group:month effect are in the same direction, but with greater
differences among groups in the slopes for self esteem. The interpretation of the quadratic
effects (Figure 12(b)) is similar, except here, differences in curvature over months are driven
largely by the difference between the DietEx group from the others on weight loss.

The interested reader might wish to compare the standard univariate plots of means in Fig-
ure 9 with the HE plots in Figure 11 and Figure 12. The univariate plots have the advantage
of showing the data directly, but cannot show the sources of significant effects in multivariate
repeated measures models. HE plots have the advantage that they show directly what is
expressed in the multivariate tests for relevant hypotheses.

6. Simplified interface: heplots 0.9 and car 2.0

It sometimes happens that the act of describing and illustrating software spurs development
to make both simpler, and such is the case here. At the beginning, the stable version of car on
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CRAN provided the computation for multivariate linear hypotheses including repeated mea-
sures designs, but could not handle doubly-multivariate designs directly; the CRAN version
of heplots could only repeated measures by explicitly transforming Y 7→ Y M and re-fitting
submodels in terms of the transformed responses.

The new versions of these packages on CRAN (http://cran.us.r-project.org/) now han-
dle these cases directly from the basic mlm object. heplot() now provides the arguments
idata, idesign, icontrasts, or, for the doubly-multivariate case, imatrix, which are passed
to Anova() to calculate the appropriate H and E matrices.

Omitting these arguments in the call to heplot() gives an HE plot for all between-S effects
(or the subset specified by the terms argument), just as before. For the within-S effects, E
matrices differ for for different within-S terms, so it is necessary to specify the intra-subject
term (iterm, corresponding to M) for which HE plots are desired. Several examples are given
below.

For the VocabularyGrowth data, Figure 3(b) can be produced by

R> (Vocab.mod <- lm(cbind(grade8,grade9,grade10,grade11) ~ 1, data=VocabGrowth))
R> idata <-data.frame(grade=ordered(8:11))
R> heplot(Vocab.mod, type="III", idata=idata, idesign=~grade, iterm="grade",

main="HE plot for Grade effect")

For the OBrienKaiser data, the code for plots of between-S effects is the same as shown above
for Figure 4 and Figure 5. The HE plot for within-S effects involving session (Figure 6) can
be produced using iterm="session":

R> idata <- data.frame(session)
R> heplot(mod.OBK, idata=idata, idesign=~session, iterm="session",

col=c("red", "black", "blue", "brown"),
main="Within-S effects: Session * (Treat*Gender)")

Similarly, HE plots for terms involving hour can be obtained using the expanded model
(mod.OBK2) for the 15 combinations of hour and session:

R> mod.OBK2 <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
post.1, post.2, post.3, post.4, post.5,
fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,

data=OBrienKaiser)
R> heplot(mod.OBK2, idata=within, idesign=~hour, iterm="hour")
R> heplot(mod.OBK2, idata=within, idesign=~session*hour, iterm="session:hour")

7. Comparison with other approaches

The principal goals of this paper have been (a) to describe the extension of the classical
MVLM to repeated measures designs; (b) to explain how HE plots provide compact and
understandable visual summaries of the effects shown in typical numerical tables of MANOVA
tests; and (c) illustrate these in a variety of contexts ranging from single-sample designs to
complex doubly-multivariate designs.

In the context of repeated measures designs, I mentioned earlier that mixed models for lon-
gitudinal data provide an attractive alternative to the MVLM (because the former easily

http://cran.us.r-project.org/
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accommodate missing or unbalanced data over intra-subject measurements, time-varying co-
variates, and often allows the residual covariation to be modeled with fewer parameters).

Here we consider a classic data set (Potthoff and Roy 1964) used in the first application of the
MVLM to growth-curve analysis. These data are often used as illustrations of longitudinal
models, e.g., Verbeke and Molenberghs (2000, §17.4).

Investigators at the University of North Carolina Dental School followed the growth of 27
children (16 males, 11 females) from age 8 until age 14 in a study designed to establish
typical patterns of jaw size useful for orthodontic practice. Every two years they measured
the distance between the pituitary and the pterygomaxillary fissure, two points that are easily
identified on x-ray exposures of the side of the head. The questions of interest include (a)
Over this age range, can growth be adequately represented as linear in time, or is some more
complex function necessary? (b) Are separate growth curves needed for boys and girls, or can
both be described by the same growth curve?

7.1. Longitudinal, mixed model approach

The mixed model for longitudinal data is very general and flexible for the reasons noted above,
but it is inappropriate here to relate any more than the barest of details necessary for this
example. We begin with simple plots of the data: A profile plot grouped by Sex (Figure 13
(left)),

R> data("Orthodont", package="nlme")
R> library("lattice")
R> xyplot(distance ~ age|Sex, data=Orthodont, type=✬b✬, groups=Subject, pch=15:25,

col=palette(), cex=1.3, main="Orthodont data")

and also a summary plot showing fitted lines for each individual, together with the pooled
ordinary least squares regression of distance on age (Figure 13 (right)).

R> xyplot(distance ~ age | Sex, data = Orthodont, groups = Subject,
main = "Pooled OLS and Individual linear regressions ~ age", type = c(✬g✬, ✬r✬),
panel = function(x, y, ...) {

panel.xyplot(x, y, ..., col = gray(0.5))
panel.lmline(x, y, ..., lwd = 3, col = ✬red✬)

})

From these plots, we can see that boys generally have larger jaw distances than girls, and the
rate of growth (slopes) for boys is generally larger than for girls. It is difficult to discern any
patterns within the sexes, except that one boy seems to stand out, with a lower intercept and
steeper slope.

With the longitudinal mixed model, contemplate fitting two models describing an individual’s
pattern of growth: a model fitting only linear growth and a model fitting each person’s trajec-
tory exactly by including quadratic and cubic trends in time. For the sake of interpretation
of coefficients in these models, it is common to recenter the time variable so that time=0
corresponds to initial status. Using Year = (age-8), we have:

m1 : yit = β0i + β1iYearit + eit (11)

m3 : yit = β0i + β1iYearit + β2iYear
2
it + β3iYear

3
it + eit , (12)
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Figure 13: Profile plot of Orthodont data, by sex (left); Pooled OLS and individual linear
regressions on age, by sex (right)

where the vector of residuals for subject i is ei• ∼ N(0,Ri). (For this example, we take Ri to
be unstructured, even though other specifications require fewer parameters.) For the linear
model (m1), we entertain the possibility that the person-level intercepts (β0i) and slopes (β1i)
depend on Sex, and so specify them as random coefficients,

β0i = γ00 + γ01Sexi + u0i , (13)

β1i = γ10 + γ11Sexi + u1i . (14)

In these equations the γs are the fixed effects, while the u (along with the errors eit) are
random effects. Note that Sex is coded 0=Male, 1=Female, so γ00 and γ10 are the intercept
and slope for Males; γ01 pertains to the difference in intercepts for Females relative to Males,
while γ11 is the difference in slopes.

The linear growth model can be fit using lme as follows:

R> Ortho <- Orthodont
R> Ortho$year <- Ortho$age - 8 # make intercept = initial status
R> Ortho.mix1 <- lme(distance ~ year * Sex, data=Ortho,

random = ~ 1 + year | Subject, method="ML")
R> #Ortho.mix1
R> anova(Ortho.mix1)

numDF denDF F-value p-value
(Intercept) 1 79 4197.05 <.0001
year 1 79 103.42 <.0001
Sex 1 25 8.34 0.0079
year:Sex 1 79 5.32 0.0237

Similarly, the model (m3) allowing cubic growth at level 1 can be fit using:

R> Ortho.mix3 <- lme(distance ~ year*Sex + I(year^2) + I(year^3), data=Ortho,
random = ~ 1 + year | Subject, method="ML")

R> anova(Ortho.mix3)
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numDF denDF F-value p-value
(Intercept) 1 77 4116.30 <.0001
year 1 77 101.43 <.0001
Sex 1 25 8.18 0.0084
I(year^2) 1 77 0.81 0.3703
I(year^3) 1 77 0.22 0.6414
year:Sex 1 77 5.22 0.0251

A likelihood ratio test confirms that the quadratic and cubic components of Year do not
improve the model,

R> anova(Ortho.mix1, Ortho.mix3)

Model df AIC BIC logLik Test L.Ratio p-value
Ortho.mix1 1 8 443.806 465.263 -213.903
Ortho.mix3 2 10 446.725 473.547 -213.363 1 vs 2 1.08061 0.5826

To aid interpretation, we can plot the estimated fixed effects from the linear model (m1) as
follows, using the predict method for lme objects to calculate the the fitted values for boys
and girls over the range of years (0 to 6) corresponding to ages 8 to 14, as in Figure 14(left).
Similar code produces a plot of the cubic model Figure 14(right).

R> grid <- expand.grid(year=0:6, Sex=c("Male", "Female"))
R> grid$age <- grid$year+8 # plot vs. age
R> fm.mix1 <-cbind(grid, distance = predict(Ortho.mix1, newdata = grid, level=0))
R> xyplot(distance ~ age, data=fm.mix1, groups=Sex, type="b",

par.settings = list(superpose.symbol = list(cex = 1.2, pch=c(15,16))),
auto.key=list(text=levels(fm.mix1$Sex), points = TRUE, x=0.05, y=0.9, corner=c(0,1)),
main="Linear mixed model: predicted growth")
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Figure 14: Fitted values showing the estimated fixed effects of age, Sex, and their interaction
in the linear growth model (left) and cubic growth model (right).

For this simple example with only two predictors, such plots provide a direct visual summary
of the fitted fixed effects in the model, as far as they go.
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7.2. MVLM approach

For the multivariate approach, the Orthodont data must first be reshaped to wide format
with the distance values as separate columns.

R> library("nlme")
R> Orthowide <- reshape(Orthodont, v.names="distance", idvar=c("Subject", "Sex"),

timevar="age", direction="wide")
R> some(Orthowide, 4)

Subject Sex distance.8 distance.10 distance.12 distance.14
1 M01 Male 26 25.0 29.0 31.0
9 M03 Male 23 22.5 24.0 27.5
65 F01 Female 21 20.0 21.5 23.0
93 F08 Female 23 23.0 23.5 24.0

The MVLM is then fit as follows, with Sex as the between-S factor. Age is quantitative, so
the intra-subject data frame (idata) is created with age as an ordered factor.

R> Ortho.mod <- lm(cbind(distance.8, distance.10, distance.12, distance.14) ~ Sex, data=Orthowide)
R> idata <- data.frame(age=ordered(seq(8,14,2)))
R> Ortho.aov <- Anova(Ortho.mod, idata=idata, idesign=~age)
R> Ortho.aov

Type II Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.9940 4123 1 25 < 2e-16 ***
Sex 1 0.2710 9 1 25 0.00538 **
age 1 0.8256 36 3 23 6.88e-09 ***
Sex:age 1 0.2601 3 3 23 0.06960 .
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

We see that both Sex and age are highly significant and their interaction is nearly significant.

Figure 15 shows HE plots for the between- and within-S effects, produced as shown below.
The left panel plots the effect of Sex for ages 8 and 14, with a green line of unit slope.
Males clearly show greater growth by age 14, and the difference between males and females
is greater at at 14 than at age 8. The right panel shows the linear and quadratic trends with
age, reflecting the overall age main effect and the Sex:age interaction. Recalling that the
contributions of each displayed variable to each effect in an HE plot can be seen by their
horizontal and vertical shadows relative to the E ellipse, we see that the main effect of age
is essentially linear, and the overall Sex:age effect is nearly significant due to a difference in
slopes, but not curvature.

R> op <- par(mfrow=c(1,2))
R> heplot(Ortho.mod, variables=c(1,4), asp=1, col=c("red", "blue"),

xlim=c(18,30), ylim=c(18,30),
main="Orthodont data: Sex effect")

R> abline(0,1, col="green")
R> heplot(Ortho.mod, idata=idata, idesign=~age, iterm="age", col=c("red", "blue", "brown"),

main="Orthodont data: Within-S effects")
R> par(op)

To examine the questions of interest here in more detail, we focus on the intra-subject design
and ask if linear growth is sufficient to explain both average development over time and
differences between boys and girls. This is easily answered visually from the pairs() plot
(not shown here),
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Figure 15: HE plots for the Ortho.mod MANOVA model, showing between-S effects for
distance at ages 8 and 14 (left) and the linear and quadratic within-S effects for age and
Sex:age (right).

R> pairs(Ortho.mod, idata=idata, idesign=~age, iterm="age", col=c("red", "blue", "brown"))

and, in particular, the panel corresponding to the nonlinear (quadratic and cubic) components
of trend, shown in Figure 16.

R> heplot(Ortho.mod, idata=idata, idesign=~age, iterm="age", col=c("red", "blue", "brown"),
variables=c(2,3), main="Orthodont data: Nonlinear Within-S effects")

We can confirm the impression that no nonlinear effects are important by testing linear
hypotheses. To explain this, we first show the details of the test of the overall Sex:age effect,
as tested with linearHypothesis(). The “response transformation matrix” shown below is
equivalent to Mpoly described earlier (Section 3.1) for a 4-level factor with linear, quadratic
and cubic trend components. The univariate tests for individual contrasts in age are then
based on the diagonal elements of the H and E matrices.

R> linearHypothesis(Ortho.mod, hypothesis="SexFemale", idata=idata, idesign=~age, iterms="age", tit

Response transformation matrix:
age.L age.Q age.C

distance.8 -0.670820 0.5 -0.223607
distance.10 -0.223607 -0.5 0.670820
distance.12 0.223607 -0.5 -0.670820
distance.14 0.670820 0.5 0.223607

Sum of squares and products for the hypothesis:
age.L age.Q age.C

age.L 12.11415 3.81202 -2.86766
age.Q 3.81202 1.19955 -0.90238
age.C -2.86766 -0.90238 0.67883

Sum of squares and products for error:
age.L age.Q age.C

age.L 59.16733 -11.22417 4.52784
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Figure 16: Nonlinear components of the within-S effects of age and Sex:age, showing that
they are quite small in relation to within-S error.

age.Q -11.22417 26.04119 -1.28193
age.C 4.52784 -1.28193 62.91932

Multivariate Tests: Sex:age effect
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.260113 2.69527 3 23 0.069604 .
Wilks 1 0.739887 2.69527 3 23 0.069604 .
Hotelling-Lawley 1 0.351557 2.69527 3 23 0.069604 .
Roy 1 0.351557 2.69527 3 23 0.069604 .
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

From this, the linear and nonlinear terms can be tested by selecting the appropriate columns
of Mpoly supplied as the contrasts associated with the age effect. For example, for tests of
the linear effect of age and the Sex:age interaction (differences in slopes),

R> linear <- idata
R> contrasts(linear$age, 1) <- contrasts(linear$age)[,1]
R> print(linearHypothesis(Ortho.mod, hypothesis="(Intercept)",

idata=linear, idesign=~age, iterms="age", title="Linear age"), SSP=FALSE)

Multivariate Tests: Linear age
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.76892 83.187 1 25 1.9862e-09 ***
Wilks 1 0.23108 83.187 1 25 1.9862e-09 ***
Hotelling-Lawley 1 3.32748 83.187 1 25 1.9862e-09 ***
Roy 1 3.32748 83.187 1 25 1.9862e-09 ***
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

R> print(linearHypothesis(Ortho.mod, hypothesis="SexFemale",
idata=linear, idesign=~age, iterms="age", title="Linear Sex:age"), SSP=FALSE)
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Multivariate Tests: Linear Sex:age
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.169948 5.1186 1 25 0.032614 *
Wilks 1 0.830052 5.1186 1 25 0.032614 *
Hotelling-Lawley 1 0.204744 5.1186 1 25 0.032614 *
Roy 1 0.204744 5.1186 1 25 0.032614 *
---
Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Similarly, the nonlinear effects of age and the Sex:age interaction can be tested as follows,
using the contrasts for quadratic and cubic trends in age.

R> nonlin <- idata
R> contrasts(nonlin$age, 2) <- contrasts(nonlin$age)[,2:3]
R> print(linearHypothesis(Ortho.mod, hypothesis="(Intercept)",

idata=nonlin, idesign=~age, iterms="age", title="Nonlinear age"), SSP=FALSE)

Multivariate Tests: Nonlinear age
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.103180 1.38061 2 24 0.27069
Wilks 1 0.896820 1.38061 2 24 0.27069
Hotelling-Lawley 1 0.115051 1.38061 2 24 0.27069
Roy 1 0.115051 1.38061 2 24 0.27069

R> print(linearHypothesis(Ortho.mod, hypothesis="SexFemale",
idata=nonlin, idesign=~age, iterms="age", title="Nonlinear Sex:age"), SSP=FALSE)

Multivariate Tests: Nonlinear Sex:age
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.052578 0.665952 2 24 0.52302
Wilks 1 0.947422 0.665952 2 24 0.52302
Hotelling-Lawley 1 0.055496 0.665952 2 24 0.52302
Roy 1 0.055496 0.665952 2 24 0.52302

These examples show that, in simple cases, traditional plots of fitted values from mixed models
(Figure 14) have the advantage of simple visual interpretation in terms of slopes and intercepts,
at least for linear models. But such profile plots are generic: comparable plots could equally
well be drawn for the fitted values from the MVLM in this section. HE plots for repeated
measure designs have the additional advantage of showing the nature of significance tests and
linear hypotheses, though the structure of the MVLM requires separate plots of between-S
and within-S effects. In more complex designs with multiple between-S and within-S effects,
and designs with multivariate responses (where mixed models do not apply), HE plots gain
greater advantage.

8. Discussion

Graphical methods for univariate response models are well-developed, but analogous methods
for multivariate responses are still developing. Indeed, this is a fruitful area for new research
(Friendly 2007). HE plots provide one new direction, providing direct visualizations of effects
in MVLMs, in the space of response variables (or in the the reduced-rank canonical space
(candisc package) displaying maximal differences).
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This paper has shown how these methods can be extended to repeated measures designs, by
displaying effects in the transformed space of contrasts or linear combinations for within-S
effects. As we hope to have shown, these plots can provide insights into the relations among
effects and interpretations of those that are significant (or not) which go beyond what is
available in traditional, univariate displays.
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