gWQSRS: Generalized Weighted Quantile Sum Regression Random Subset

Fits Weighted Quantile Sum Random Subset (WQSRS) regressions for continuous, binomial, multinomial and count outcomes. Paul Curtin, Joshua Kellogg, Nadja Cech, Chris Gennings (2019) <doi:10.1080/03610918.2019.1577971>.

Version: 1.1.1
Imports: Rsolnp, gWQS (≥ 2.0.0), ggplot2, dplyr, stats, broom, rlist, MASS, reshape2, plotROC, knitr, kableExtra, nnet, future, future.apply, ggrepel, aods3
Suggests: pscl
Published: 2020-03-03
Author: Stefano Renzetti, Paul Curtin, Chris Gennings
Maintainer: Stefano Renzetti <stefano.renzetti88 at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: gWQSRS results


Reference manual: gWQSRS.pdf
Package source: gWQSRS_1.1.1.tar.gz
Windows binaries: r-prerelease:, r-release:, r-oldrel:
macOS binaries: r-prerelease: gWQSRS_1.1.1.tgz, r-release: gWQSRS_1.1.1.tgz, r-oldrel: gWQSRS_1.1.1.tgz
Old sources: gWQSRS archive


Please use the canonical form to link to this page.