EstimationTools: Maximum Likelihood Estimation for Probability Functions from Data Sets

A routine for parameter estimation for any probability density or mass function implemented in R via maximum likelihood (ML) given a data set. This routine is a wrapper function specifically developed for ML estimation. There are included optimization procedures such as 'nlminb' and 'optim' from base package, and 'DEoptim' Mullen (2011) <doi:10.18637/jss.v040.i06>. Standard errors are estimated with 'numDeriv' Gilbert (2011) <> or the option 'Hessian = TRUE' of 'optim' function.

Version: 1.2.1
Depends: R (≥ 3.3.0), DEoptim, boot, numDeriv, BBmisc
Imports: Rdpack, utils, stats
Suggests: gamlss.dist, survival, knitr, rmarkdown
Published: 2019-10-24
Author: Jaime Mosquera ORCID iD [aut, cre], Freddy Hernandez ORCID iD [aut]
Maintainer: Jaime Mosquera <jmosquerag at>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: EstimationTools results


Reference manual: EstimationTools.pdf
Vignettes: Bootstrap implementation
maxlogL: Maximum Likelihood estimation in R
Package source: EstimationTools_1.2.1.tar.gz
Windows binaries: r-prerelease:, r-release:, r-oldrel:
macOS binaries: r-prerelease: EstimationTools_1.2.1.tgz, r-release: EstimationTools_1.2.1.tgz, r-oldrel: EstimationTools_1.2.1.tgz
Old sources: EstimationTools archive


Please use the canonical form to link to this page.