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Abstract: Jump diffusion processes provide a means of modelling both
small and large deviations in continuously evolving processes. Unfortunately,
the calculus of jump diffusion processes makes it difficult to analyse non-
linear models. This paper develops a method for approximating the transition
densities of time-inhomogeneous multivariate jump diffusions with state-
dependent and/or stochastic intensity. By deriving a system of equations
that govern the evolution of the moments of the process, we are able
to approximate the transitional density through a density factorization
that contrasts the dynamics of the jump diffusion with that of its jump
free counterpart. Within this framework we develop a class of quadratic
jump diffusions for which we can calculate accurate approximations to the
likelihood function. Subsequently, we analyse a number of non-linear jump
diffusion models for Google equity volatility, alternating between various
drift, diffusion, and jump mechanism specifications. In doing so we find
evidence of both cyclical drift and a state-dependent jump mechanism.
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1. Introduction

Real world processes are often subject to numerous sources of random input,
resulting in multifarious random behaviour that forms an integral part of the
trajectory of the process. In modelling such phenomena, it is thus imperative that
the model equations account for the various sources of randomness that govern
the dynamics of the process. Although diffusion processes are used extensively
in the modelling of continuous processes, it is usually assumed that Brownian
motion suffices as driving mechanism for the stochastic evolution of the processes.
Where it does not suffice, it is possible to generalise the model process in order to
make it more realistic for the application at hand. One such generalisation is to
include randomly occurring ‘jumps’ in the trajectory of the model process. This
modification has primarily been motivated in financial contexts where diffusion
models are used to describe the dynamics of price/asset processes which are
subject to seemingly spontaneous yet frequent jumps in observed time series.
For example, it is often assumed that log-returns on a given stock-price process
are Normally distributed. This assumption can easily be accommodated in an
stochastic differential equation by assuming that the dynamics of the stock-price
process follows that of geometric Brownian motion:

dXt = µXtdt+ σXtdBt, (1.1)
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where Xt denotes the stock price at time t, from which it follows that log(Xt)−
log(Xs) ∼ N((µ− σ2/2)(t− s), σ2(t− s)) for t > s. However, the normality of
stock-price returns have long been contested, and empirical evidence suggests
that returns often exhibit features which are not well replicated by the Normal
distribution. Perhaps the most well documented of these is the apparent lack of
heavy tails in the model process. This is demonstrated by calculating descriptive
statistics such as the skew and kurtosis of the observed return series, which may
subsequently be contrasted to the corresponding statistics under the Normal
distribution. In the context of diffusion processes, this disparity is typically
compensated for by formulating a stochastic volatility model wherein the diffusion
coefficient of the returns process is itself treated as a stochastic process. That is,
the revised process may for example assume the form:

d log(Xt) =
(
µ− 1

2
σ2
t

)
dt+ σtdB

(1)
t

dσ2
t = a(σ2

t , t)dt+ b(σ2
t , t)dB

(2)
t ,

(1.2)

where a(σ2
t , t) and b(σ2

t , t) denote the drift and diffusion of the variance process

respectively, and B
(1)
t and B

(2)
t are correlated Brownian motions. Among nu-

merous other attractive properties, stochastic volatility models make it possible
to more accurately capture the tail behaviour of the stock-price returns by
explicitly allowing the variance of the log-returns to vary over time, resulting
in a significantly improved approximation of the observed process. However,
care needs to be taking when interpreting the stochastic volatility mechanism.

Indeed, when B
(1)
t and B

(2)
t are uncorrelated the marginal distribution of the

log-returns process conditional on a known initial value for the variance process
(i.e., Xt|Xs, σ

2
s for t > s) is still Normal, and even when strong correlation is

present, in which case the marginal distribution of log-returns may be skew with
slightly fatter tails than predicted under the Normal distribution, the resulting
transitional density may not be sufficiently leptokurtic to account for extreme
return events over short transition horizons. To illustrate the point, consider a
rolling estimate of kurtosis for daily log-returns of the Standard and Poor’s 500
index (S&P 500). Let Xti denote the value of the S&P 500 index at time ti, then
define a backward-looking rolling estimate of kurtosis with bandwidth h by:

K(ti, h) =
1

h× ŝ2(ti, h)

n∑
k=i−h+1

(
Xtk − m̂(ti, h)

)4

(1.3)

for all i ≥ h, where ŝ(ti, h) = 1
h

∑j
k=i−h+1

(
Xtk − m̂(ti, h)

)2
and m̂(ti, h) =

1
h

∑i
k=i−h+1Xtk . Figure 1.1 depicts the rolling estimate of kurtosis along with

a time-differenced estimate, calculated as {K(ti, h) − K(ti−1, h) : i = h, h +
1, . . . N}, using a bandwidth of h = 250 days for the time period 1990-01-01 to
2015-12-31. Under this bandwidth, the differenced series represents the change
in estimated kurtosis caused by moving the rolling estimate one day forward
for (approximately) the last year’s worth of data. Additionally, we superimpose
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an overall estimate of kurtosis (calculated over the entire time period) along
with that of the Normal distribution. Based on the overall estimate, the sample
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Figure 1.1. Rolling estimate of kurtosis calculated using a bandwidth of h = 250 days on
daily log-returns of the S&P 500 index for the time period 1990-01-01 to 2015-12-31 (left)
and the corresponding time-differenced rolling estimate (right).

kurtosis clearly exceeds that of the Normal distribution. However, the one year
rolling estimate reveals that although the kurtosis of the log-returns series is
typically higher than that of a Normal distribution, the size of the overall estimate
can be attributed to the occurrence of a number of extreme return events. These
events manifest as sudden spikes in the rolling estimate of kurtosis which can
be clearly seen in the time-differenced estimate. In order to account for such
extreme events Merton (1976) for example proposed the inclusion of jumps in
the diffusion trajectory in order to create a more accurate model of asset price
returns than is predicted by the continuous paths of geometric Brownian motion,
in which case the modified stochastic differential equation (SDE) assumes the
form

d log(Xt) = (µ− 0.5σ2)dt+ σdBt + żtdNt, (1.4)

where żt denotes a normally distributed jump random variable and Nt is a
Poisson process with constant intensity i.e., Nt −Ns ∼ Poi(λ(t− s)). Under this
formulation, extreme events are explicitly included in the stochastic differential
equation as randomly occurring discontinuous jumps in the diffusion trajectory.
Consequently, the disparity between observed tail behaviour of log-returns and
that of Brownian motion is mitigated by the inclusion of a jump mechanism.
Building on this, one may extend the model in order to formulate a stochastic
volatility model with jumps, for example:

d log(Xt) =
(
µ− 1

2
σ2
t

)
dt+ σtdB

(1)
t + ż

(1)
t dNt

dσ2
t = a(σ2

t , t)dt+ b(σ2
t , t)dB

(2)
t + ż

(2)
t dNt,

(1.5)
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where jumps affect both returns and volatility at the same time. Using this, the
useful properties of stochastic volatility specification are retained whilst directly
accounting for extreme return events and jumps in volatility.

Although the addition of a jump mechanism serves to improve the flexibility
of diffusion models and allows for the formulation of more realistic models
of real-world processes, this flexibility comes at the cost of magnifying the
already significant difficulties associated with the calculus of diffusion processes.
Consequently, the space of analytically tractable jump diffusion models is even
more sparse than that of the jump-free diffusion processes. Furthermore, where
analytical solutions to quantities such as the transitional density are available,
they are often precluded by simplifying assumptions on the specification of both
the diffusion part of the process as well as the jump mechanism of the model
process. That said, a number of different jump mechanisms have been proposed
in the literature: Ball and Torous (1985) propose log-normally distributed jumps
under geometric Brownian motion as a model for stock price returns, whilst
Ramezani and Zeng (1998) and Kou (2002) assume the same model opting instead
for a double-exponential jump distribution. Although the choice of distribution
is usually based on some a priori information of the process to be modelled,
choosing a valid jump distribution can be a subtle process. For example, in
the case of Ball and Torous (1985) it is actually meant that the log of the
underlying process has normally distributed jumps (i.e., Brownian motion with
drift and normally distributed jumps), implying that both the diffusion and jump
dynamics are based on the Normal distribution. In this case, Honore (1998) notes
that depending on the quality of the data it can be difficult to distinguish which
source of randomness is responsible for a random innovation in the underlying
process, thus making it difficult to calculate reliable parameter estimates for
such a model despite the relatively simple structure of the model.

Despite the limited set of analytically tractable jump diffusion models, numer-
ous estimation techniques have been proposed for jump diffusion models with
analytically intractable dynamics. Eraker (2001) apply Monte Carlo techniques,
replacing missing sample paths with simulated trajectories (see also Eraker,
Johannes and Polson (2003) and Eraker (2004)) in order to estimate the likeli-
hood, thus circumventing the need for closed-form solutions to the likelihood
function. Other notable approaches include the efficient method of moments
(EMM) scheme of Gallant, Hsieh and Tauchen (1997) which was later used by
Craine, Lochstoer and Syrtveit (2000) to perform inference on multivariate jump
diffusions, and the empirical characteristic function estimation schemes of Jiang
and Knight (2002) and Rockinger and Semenova (2005). Yu (2007) extended the
popular Hermite series approximations for jump-free diffusions (Äıt-Sahalia, 2002;
Aı̈t-Sahalia et al., 2008) in order to calculate closed-form likelihood approxima-
tions for multivariate jump diffusions whilst Zhang and Schmidt (2016) develop
short horizon density approximations based on expansions of the characteristic
function which can subsequently be used to approximate the likelihood function.
Although most of the literature on the estimation of jump diffusion models
are concerned with parametric inference, non-parametric techniques have also
been developed by Johannes (1999); Bandi and Nguyen (2003) and Aı̈t-Sahalia,
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Fan and Peng (2009). In addition to traditional parametric and non-parametric
methods, technical aspects regarding the nature of jump mechanisms in the
context of inference have also been explored. For example, Aı̈t-Sahalia (2004)
shows how to separate the diffusion and jump dynamics for a given jump diffusion
model, whilst Äıt-Sahalia et al. (2009) and Äıt-Sahalia and Jacod (2011) develop
tests for the presence and frequency of jumps in partially observed processes
respectively.

In the present paper we develop a procedure for performing likelihood based
inference on a class of non-linear, multivariate jump diffusion processes with state-
dependent intensity. Using this scheme it is possible to create a rich ecosystem
of jump diffusion models that generalise many well-known diffusion models
such as the Cox-Ingersoll-Ross (CIR) process (Cox, Ingersoll and Ross, 1985)
and Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930) to the jump
diffusion class. Furthermore, the methodology readily allows for the specification
of any jump distribution with a known moment structure (e.g., the higher order
moments of a Normal or Laplace distribution). The paper is organised as follows:
Section 2 outlines theoretical concepts which precede the methodology to follow.
Section 3 develops the core methodology of the paper, in which we detail a
scheme for approximating the transitional density of a jump diffusion process
based on its moment trajectories. Section 4 compares the methodology to existing
techniques in the literature for models with near analytically tractable dynamics
and subsequently demonstrates how the methodology can be used to conduct
inference on jump diffusion models with non-linear dynamics. In Section 6 we
apply the methodology to a real-world dataset by fitting various jump diffusion
models to Google equity volatility time series. Finally, we give some concluding
remarks in Section 7.

2. Multivariate jump diffusions with state-dependent jump intensity

Let Pt denote a multivariate, k-dimensional pure jump process with dynamics
given in differential form by:

dPt = J(Pt, żt, t)dNt, (2.1)

where J(Pt, żt, t) = (εij(Pt, żt, t))k×q denotes the jump matrix, żt = (ż
(ij)
t )k×q is

a k× q matrix of random variables with statistically independent columns, Nt =

(N
(j)
t )q×1 is a q-dimensional counting process with intensity vector λ(Pt, ṙt, t) =

(λj(Pt, ṙt, t))q×1, and ṙt is a q-dimensional stochastic process on which the
intensity vector may depend. Under this formulation, the jump matrix relates
discrete increments in the process Nt into non-discrete changes in state of the
process Pt. This is achieved by mapping the discrete increments to real-valued
increments through realisations of the jump variables, żt. In turn the mapping
is governed by the jump matrix J(Pt, żt, t), which determines how the jump
variables enter the process and how the mapping depends on the current state of
the process. For example, if the first element of the process Nt increments at time
τ , then every element of Pτ changes in accordance to the outcome of the first
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column of the jump-matrix, which in turn is determined by the functional relation
between the first column of jump variables in zτ and Pτ through J(Pτ , żτ , τ).

To see this, it is useful to write the process Pt = {P (1)
t , P

(2)
t , . . . , P

(k)
t }′ in terms

of its individual components as:

P
(i)
t =

q∑
j=1

N
(j)
t∑
l=0

εij(Pt, ż
(.j),l
t , t) for i = 1, 2, . . . , k, (2.2)

where ż
(.j),l
t denotes the l-th realisation of the j-th column of the jump variable

matrix ż
(.j)
t = {ż(1j)

t , ż
(2j)
t , . . . , ż

(kj)
t }′ with distribution function φj . P

(i)
t thus

consists of the sum of all jump realisations that have occurred upto and including
time t for the i-th dimension, across all q counting process elements of Nt.
Figure 2.1 illustrates how the jump process is constructed from a simulated
trajectory for k = 1 and q = 2.

Simulated jump process (k = 1, q = 2)

Time (t)

z⋅ t
(12)

Pt
(1)

dNt
(2)

z⋅ t
(11)

dNt
(1)

dPt
(1)

−
2

0
1

2
−

2
0

1
2

−
2

0
1

2
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Figure 2.1. Construction of the jump process from the increments of individual jump con-

stituents for k = 1 and q = 2. Here ε11(P
(1)
t , ż

(11)
t , t) = z

(11)
t with z

(11)
t ∼ N(−1, 0.52),

ε12(P
(1)
t , ż

(21)
t , t) = z

(21)
t P

(1)
t with z

(12)
t ∼ N(0, 0.052) and N

(1)
t and N

(2)
t are subject to

constant intensity functions, λ1 = 10 and λ2 = 2, respectively. P
(1)
t is constructed by adding

the increments of each jump process sequentially as they occur. Consequently the increments

of P
(1)
t simply reflect the combined increments of the individual jump components.

In addition to the jump constituents, the process is characterised by the rate
at which jump realisations occur, i.e., the rate at which increments in each
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N
(j)
t occur. This is determined by the intensity vector, which is further allowed

to depend on an external vector process ṙt as well as the current state of the
process. For simplicity we will assume that the arrival rate of each of the Poisson
components is also restricted to depend on only a single element of the vector ṙt:

λj(Pt, ṙt, t) = λj(Pt, ṙ
(j)
t , t) (2.3)

where ṙ
(j)
t ∈ ṙt = {ṙ(1)

t , ṙ
(2)
t , . . . , ṙ

(k)
t }′ and each ṙ

(j)
t evolves according to a distri-

bution function πj . Pt thus represents a pure jump process that is characterised
by the distributions of the jump-variables and the intensity processes which dic-
tate the rate at which jump realisations occur. The purpose of this formulation is
to encompass a class of jump processes with both state-dependent and stochastic
intensity, whilst permitting multiple sources of randomness. For example, for
k = 1 and q = 2 the trajectory of the process is subject to two jump sources with
possibly distinct dynamics. This may be useful for cases where jumps observed in
a real world data have distinct sources with differing distributional characteristics.
Likewise, allowing the intensity vector to be stochastic through the process ṙt,
it is possible to formulate a jump mechanism for which the frequency of jump
realisations may pass stochastically through high and low intensity phases, which
may be useful for modelling jump dynamics over long time periods in financial
contexts.

Although pure jump processes are extremely useful modelling tools, a notable
deficiency from the perspective of modelling continuously evolving processes is
that the process remains dormant in a given state in between successive jump
innovations. That is, for phenomena that exhibit jump behaviour but still evolve
on small scales in between jumps, the present formulation does not suffice. In
order to account for the stochastic evolution of the process between intermittent
jumps, one may define a continuous mixture process consisting of a pure jump
process and a diffusion process. The dynamics of the resulting k-dimensional

jump diffusion Xt = {X(1)
t , X

(2)
t , . . . , X

(k)
t }′ is then governed by the SDE:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt + dPt, (2.4)

where
dPt = J(Xt, żt, t)dNt (2.5)

gives the jump mechanism with intensity vector λ(Xt, ṙt, t), µ(Xt, t) = (µi(Xt, t))k×1

gives the instantaneous drift vector, σ(Xt, t) = (σij(Xt, t))k×k is the diffusion

matrix of the process and Bt = (B
(i)
t )k×1 is a vector of independent Brownian

motions. Equation 2.4 thus constitutes a multivariate jump diffusion with state-
dependent jumps and state-dependent and/or stochastic intensity. Consequently,
the auxiliary variables contained żt have the effect of inducing discontinuous
jumps in the otherwise continuous paths of the diffusion whenever the counting
processes contained in Nt increment. Furthermore, the rate at which jumps
occur may vary according to both the state of the jump diffusion and/or some
external process ṙt. The relationship between the various constituents of the
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jump diffusion can more easily be seen by writing equations 2.4 and 2.5 in matrix
form:

d


X

(1)
t
...

X
(k)
t

 =

µ1(Xt, t)
...

µ2(Xt, t)

 dt+

σ11(Xt, t) . . . σ1k(Xt, t)
...

. . .
...

σk1(Xt, t) . . . σkk(Xt, t)

 d

B

(1)
t
...

B
(k)
t

+ d


P

(1)
t
...

P
(k)
t


(2.6)

where

d


P

(1)
t
...

P
(k)
t

 =


ε11(Xt, ż

(11)
t , t) . . . ε1q(Xt, ż

(1q)
t , t)

...
. . .

...

εk1(Xt, ż
(k1)
t , t) . . . εkq(Xt, ż

(kq)
t , t)

 d

N

(1)
t
...

N
(q)
t

 . (2.7)

Since Equation 2.4 is formulated in continuous time, the SDE can also be inter-
preted by relating the coefficients of the equation to its instantaneous moments:
Let Γ(Xt, t) = (γij(Xt, t))k×k = σ(Xt, t)σ

′(Xt, t) denote the covariance matrix
of the diffusion. Given a jump SDE of the form of Equation 2.4, we have for
i, j = 1, 2, . . . k:

lim
h→0

E[X
(i)
t+h −X

(i)
t |Xt]

h
= µi(Xt, t) +

q∑
m=1

Eż[εim(Xt, żt, t)]Eṙ[λm(Xt, ṙt, t)]

(2.8)
and for v + w ≥ 2

lim
h→0

E[(X
(i)
t+h −X

(i)
t )v(X

(j)
t+h −X

(j)
t )w|Xt]

h
=

γij(Xt, t)I(v + w = 2) +

q∑
m=1

Eż[εim(Xt, żt, t)
vεjm(Xt, żt, t)

w]Eṙ[λm(Xt, ṙt, t)].

(2.9)
Interestingly, equations 2.8 and 2.9 indicate that, on an infinitesimal scale,
although the first two moments of a jump diffusion is dictated by a mixture of
the diffusion and jump dynamics, the higher order instantaneous moments are
completely determined by the jump mechanism of the process.

Although the instantaneous dynamics of jump diffusion processes have both
theoretical and practical applications, in the context of parametric inference we
are often interested in the dynamical behaviour of the process over finite time
horizons. As such, a pivotal quantity of interest in the analysis of jump diffusions
is the evolution of the transitional density over time. Let {S ⊆ Rk,X , f},
{Ψj ,Zj , φj}j and {Ωj ,Lj , πj}j be probability spaces for j = 1, 2, . . . , q then the
transitional density f(Xt|Xs) of the process Xt at time t starting in Xs at time
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s is given by the Kolmogorov forward equation (Hanson, 2007):

∂

∂t
f(Xt|Xs) =

−
k∑
i=1

∂

∂X
(i)
t

µi(Xt, t)f(Xt|Xs) +

k∑
i=1

k∑
j=1

∂2

∂X
(i)
t ∂X

(j)
t

γij(Xt, t)f(Xt|Xs)

+

q∑
j=1

∫
Ψj

∫
Ωj

λj(∇(Xt, żt)
(.j), ṙ

(j)
t , t)f(∇(Xt, żt)

(.j)|Xs)|δj(żt)|dπj(ṙ(j)
t )dφj(ż

(.j)
t )

−
q∑
j=1

∫
Ψj

∫
Ωj

λj(Xt, ṙ
(j)
t , t)f(Xt|Xs)dπj(ṙ

(j)
t )dφj(ż

(.j)
t )

(2.10)
where (.j) again denotes the j-th column of a matrix and the elements ∇(Xt, żt)

(.j) =

νj(Xt + J(Xt, żt)
(.j)) = (νij(X

(i)
t + εij(Xt, żt)))k×1 and |δj(żt)| have special

meaning: The role of the function νj(Xt + J(Xt, żt)
(.j)) is to map jumps in

such a way that the state of the process at time t, Xt, is reached as the result
of a jump occurrence at an instant just prior to t. νj(Xt + J(Xt, żt)

(.j)) thus
has the action of reverting the state of the process to that which it was ‘before’
the jump occurrence. For example, if the jump matrix is independent of the

process level and J(Xt, żt)
(.j) = ż(.j), then νj(Xt + ż

(.j)
t ) = Xt − ż

(.j)
t . In turn,

|δj(ż)| acts as the Jacobian resulting from the inversion. For example, following
J(Xt)

(.j) = ż(.j), |δj(ż)| = 1. In order for Equation 2.10 to be well defined, we
require boundary conditions on the equation. Similarly to jump-free diffusions,
the initial conditions for Equation 2.10 are given by the multivariate Dirac delta
function f(xs|Xs) = δ(xs −Xs) where

δ(x) =

{
∞ if x = 0,

0 otherwise.
(2.11)

However, due to the presence of the jump mechanism, we also require initial
values for the jump components {ṙj(s) = ṙs, Nj(s) = 0 : j = 1, 2, . . . , q} and any
additional time dependences – which we take to have known values at time s.

Although PDDEs such as the Kolmogorov equations are extremely difficult
to analyse and solve, the transitional density forms the principal constituent to
numerous techniques in the analysis of diffusion processes. In the sections that
follow we develop a scheme for calculating approximate solutions to Equation 2.10
for time-inhomogeneous, non-linear jump diffusions, making it possible to analyse
a wide spectrum of jump diffusion models.
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3.3. A Scalar Example

In order to demonstrate the use of the moment equations in analysing a jump
diffusion model, we consider a non-linear, time-inhomogeneous jump diffusion
with stochastic intensity. Let:

dXt = κx(µx −Xt)dt+ σx(1 + 0.4 sin(πt))
√
XtdBt + dPt

dPt = żtdNt
(3.46)

with żt ∼ N(µz, σ
2
z) and λ(Xt, ṙt, t) = ṙt where the intensity parameter ṙt has

dynamics given by a continuous time Markov chain (CTMC):

ṙt =

{
λ1 Low jump frequency,

λ2 High jump frequency,
(3.47)

with transition rate matrix

R =

(
−β1 β1

β2 −β2

)
. (3.48)

Under the dynamics of Equation 3.46 the process exhibits linear drift and state-
dependent volatility which varies periodically over time. In addition, the process
is subject to randomly occurring jump events for which the jump intensity
switches stochastically over time between levelsλ1 and λ2. Since Equation 3.46
is nested within the scalar generalised quadratic framework we may derive the
moment equations of the process directly from Equation 3.27. In order to do so
we need to evaluate the expectation of the intensity process over time. From the
transition probability matrix of ṙt, the appropriate expression follows:

E(ṙt) =

{
λ1

β2+β1e
−(β1+β2)(t−s)

β1+β2
+ λ2

β1(1−e−(β1+β2)(t−s))
β1+β2

if ṙs = λ1,

λ2
β1+β2e

−(β1+β2)(t−s)

β1+β2
+ λ1

β2(1−e−(β1+β2)(t−s))
β1+β2

if ṙs = λ2.
(3.49)

Consequently, the moment equations for model 3.46 under a 6-th order truncation
can be verified as:

m′1(t) = κxµx − κxm1(t) + j1(t)

m′2(t) = 2(κxµxm1(t)− κxm2(t)) + σ2
x(1 + 0.4 sin(πt))2m1(t) + j2(t)

m′3(t) = 3(κxµxm2(t)− κxm3(t)) + σ2
x(1 + 0.4 sin(πt))23m2(t) + j3(t)

m′4(t) = 4(κxµxm3(t)− κxm4(t)) + σ2
x(1 + 0.4 sin(πt))26m3(t) + j4(t)

m′5(t) = 5(κxµxm4(t)− κxm5(t)) + σ2
x(1 + 0.4 sin(πt))210m4(t) + j5(t)

m′6(t) = 6(κxµxm5(t)− κxm6(t)) + σ2
x(1 + 0.4 sin(πt))215m5(t) + j6(t)

(3.50)
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with mi(s) = Xi
s for i = 1, 2, . . . , 6 where

j1(t) = h(t,λ,β)ρ1

j2(t) = h(t,λ,β)(2ρ1m1(t) + ρ2)

j3(t) = h(t,λ,β)(3ρ1m2(t) + 3ρ2m1(t) + ρ3)

j4(t) = h(t,λ,β)(4ρ1m3(t) + 6ρ2m2(t) + 4ρ3m1(t) + ρ4)

j5(t) = h(t,λ,β)(5ρ1m4(t) + 10ρ2m3(t) + 10ρ3m2(t) + 5ρ4m1(t) + ρ5)

j6(t) = h(t,λ,β)(6ρ1m5(t) + 15ρ2m4(t) + 20ρ3m3(t) + 15ρ4m2(t) + 6ρ5m1(t) + ρ6),
(3.51)

and

h(t,λ,β) = λ1
β2 + β1e

−(β1+β2)(t−s)

β1 + β2
+ λ2

β1(1− e−(β1+β2)(t−s))

β1 + β2
. (3.52)

Here, the relation between the elements ρ1, ρ2, . . . , ρ6 and the parameters µz
and σz follow straightforwardly from the non-central moments of the Normal
distribution. The effect of the jump mechanism on the moments of the diffusion
can immediately be seen through Equation 3.50 where the ji(t) dictate how the
intensity and jump parameters feed into the moment structure of the process.
For example, when µz = 0 it follows that ρ1 = 0 and the mean trajectory of the
process remains unchanged from that of the jump-free process. Idiosyncrasies
aside, by solving Equation 3.50 we may evaluate the moment trajectories of
Equation 3.46 over time. When the model structure is not too complicated, this
can be achieved using standard techniques for evaluating systems of differential
equations. For large truncation orders this may involve the use of a computer
algebra system (CAS) in order to calculate Laplace transforms for elements of
the moment equations. Alternatively, when the moment equations involve non-
linear terms and/or complicated time-inhomogeneous terms, standard numerical
techniques can be used in order to solve the resulting system of moment equations.
For our purposes we employ high-order Runge-Kutta schemes such as the Runge-
Kutta-Fehlberg (4)5 method (Fehlberg, 1970) or the (8)10-th order method of
Feagin (2007)2.

In order to verify that the derived moment equations are indeed valid, we
need to perform an independent check on the resulting moment trajectories. For
these purposes we can simulate trajectories of Equation 3.46 over the desired
transition horizon and calculate moment statistics with which we can compare
the relevant quantities. In order to simulate trajectories of Equation 3.46 we
apply a Euler–Maruyama scheme to the SDE and subsequently derive an iterative
updating scheme that can be used to approximate the trajectory of a jump
diffusion at fixed points along a desired transition horizon. For example, let τ be
a scalar time index on the transition horizon [s, t] and ∆ a finite time step, then
an iterative updating scheme for simulating a single trajectory of Equation 3.46
follows:

2Here we use the convention that the the term in brackets denotes the embedded order of
the method used for calculating local error estimates.
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(1) Set τ = s and initialize the jump diffusion and intensity process Xτ and
ṙτ respectively.

(2) (a) Set:
Xτ+∆ = Xτ + µi(Xτ , τ)∆ + σ(Xτ , τ)Z, (3.53)

by drawing Z ∼ N(0,∆).

(b) If
1− exp(λ(Xτ , ṙτ , τ)∆) > u (3.54)

where u ∼ U(0, 1), draw żτ ∼ N(µz, σ
2
z) and set

Xτ+∆ = Xτ+∆ + żτ . (3.55)

(4) Set

ṙτ+∆ =


λ1 w.p. β2

β1+β2
− β2

β1+β2
e−(β1+β2)∆ if ṙτ = λ2,

λ2 w.p. β1

β1+β2
− β1

β1+β2
e−(β1+β2)∆ if ṙτ = λ1,

ṙτ otherwise.

(3.56)

(4) Set τ = τ + ∆ and if τ ≤ t go to step (2).

For purposes of the experiment, let θ = {κx, µx, σx, µz, σz} = {2, 5, 1, 1, 0.25},
λ = {λ1, λ2} = {1, 3} and β = {β1, β2} = {0.25, 1} and fix the initial values of
the process to X0 = 4 and ṙ0 = λ1. Figure 3.1 compares log-scaled simulated
moments of Equation 3.46 to those calculated from solving the moment equations
numerically. The simulated moments are calculated using 10000 trajectories and
a step-size of 0.001 time units. As expected, the simulated moments and moment
equations match closely with the mean trajectory of the process (corresponding
to m1(t)) being unaffected by the periodicity of the volatility coefficient.

Naturally, the next step in analysing Equation 3.46 is to investigate the
transitional density. Indeed, using the moment equations as a basis we can easily
approximate the transitional density using a suitable surrogate density. For
purposes of this example we make use of the scalar saddlepoint approximation:

f(Xt|Xs) ≈ f (d)
SPT (Xt|Xs) =

1√
2π ∂2

∂α2K(d)(α0, t)
exp

(
∂

∂α
K(d)(α0, t)− α0Xt

)
,

(3.57)
where

K(d)(α, t) =

d∑
i=1

αiκi(t)

i!
, (3.58)

α0 solves
∂2

∂α2
K(d)(α, t) = Xt, (3.59)

κi(t) denotes the i-th cumulant of the process at time t, and d denotes the
truncation order of the approximation. Thus, by using the appropriate moment-
cumulant relations we can easily employ the saddlepoint approximation in
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order to approximate the transitional density. Figure 3.2 compares the resulting
approximation to the frequency distribution calculated from the simulated
trajectories at various points in time. As with the moment equations, the
transition density approximation appears to accurately replicate the transition
density at the indicated time epochs. The effect of the periodic volatility can
clearly be seen in the oscillating shape of the transition density surface.
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Figure 3.1. Log-scaled simulated moment trajectories (solid, light blue) and approximate
moment equations (dashed, dark blue) for the first four non-central moments of Equation 3.46
over time.
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Figure 3.2. Approximate transition density (gray/lightgray) of Equation 3.46 and simulated
transition density (light blue - dark blue) at times t = 2, t = 3, t = 4 and t = 5. The transition
density surface is highlighted in black for each epoch of the comparison.

By repeating the calculation of the transition density approximation for a
different set of initial conditions – where instead of starting in the low jump
frequency state, we let the process start in the high jump frequency state –
we can visualize the effect of the stochastic intensity. Figure 3.3 compares the
approximate transition densities for the two initial states of the intensity process.
Under the high intensity regime the transition density is significantly more skewed
than under the low intensity regime. This follows intuitively since, although
the jump distribution remains fixed regardless of the state of the intensity
process, under the assumed parameter set jumps will typically assume positive
values. Consequently, if jumps occur more frequently the process is likely to
have propagated further from its initial state at a given time than under the
low intensity regime. Noting that, despite there being a non-zero probability of
the intensity process switching back to the low intensity state, on average the
intensity is expected to be higher for the duration of the transition horizon than
compared to starting from the low intensity state. Indeed, this can be verified
by comparing h(t,λ,β) for both initial states of the intensity process under the
assumed parameter set.



Pienaar & Varughese/Likelihood Inference for Non-Linear Jump Diffusions 57

Parameter True Value Estimate 90% CI

µx 0.50 0.54 (0.39, 0.68)

βx 2.00 1.92 (1.47, 2.33)

σx 0.10 0.11 (0.10, 0.11)

µy 1.00 1.05 (0.92, 1.18)

βy 5.00 4.96 (4.88, 5.01)

σy 0.10 0.11 (0.10, 0.11)

λ 1.00 1.10 (0.82, 1.43)

µz11 0.50 0.46 (0.30, 0.61)

µz21 0.50 0.31 (0.21, 0.45)

σz11 0.50 0.53 (0.41, 0.70)

σz21 0.50 0.55 (0.47, 0.66)

Table 2
Parameter estimates and 90% credibility intervals for Equation 5.10 under the simulated

dataset in Figure 5.5.

The resulting parameter estimates match that of the true parameter set quite
closely, with the notable exception of µz21 . However, closer inspection reveals that
the estimate calculated under the jump diffusion model is indeed a valid estimate
as the value calculated from the jump realisations directly is quite similar. Indeed,
for this experiment the jump signal is quite strong since the dispersion of the
jump distribution is large relative to the diffusion parameters. Consequently, the
contrast between the jump and diffusion dynamics is sufficiently high to make
quite accurate inference with regard to the dynamics of the jump mechanism.
Although the estimated parameters are close to the true parameter set, the
particular sequence of jump realisations generated in the simulation contains
values which are relatively unlikely under the true parameter set. Despite this,
the parameters of the jump mechanism could still be extracted accurately, albeit
preserving the attributes of the unlikely jump sequence.

6. Application to Google stock price volatility

In a post sub-prime crisis world, investors have become increasingly aware of
the importance of understanding the impact that large movements in equity
values can have on portfolios and financial products. As such, techniques in
analysing financial data have grown increasingly complex and often focus on
better managing the risks and opportunities associated with extreme events, both
at the high frequency and low frequency trading spectrum. In conjunction with
this, data markets have evolved similarly, with highly detailed data on thousands
of economic variables and equities accessible at little to no cost. In keeping
with this, the Chicago Board Options Exchange (CBOE) publishes volatility
indexes for a number of large-cap stocks listed on major stock exchanges. By
using the same principles that underlie established indices such as the S & P 500
volatility index, these equity volatility indices attempt to quantify the evolution
of the volatility of individual stock price processes as opposed to that of an index
of equities. Indeed, the dynamics of individual stock processes can be vastly
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different from that of an aggregated set of stocks. As such, equity volatility
indices can be extremely useful in quantifying exposure in portfolios which have
large investments in such equities and related processes. By using various jump
diffusion models, we attempt to model the equity volatility of internet search
giant Google. Figure 6.1 illustrates the trajectory of the Google equity volatility
(VXGOG) from its inception in 2010 up to the end of 2015, sampled at daily
intervals. For purposes of the analysis that follows we measure time in years
and use exact dates for observations in order to construct transition horizons for
consecutive observations.
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Figure 6.1. Daily equity volatility for Google shares for the period 2010-03-11 to 2016-01-01.

In order to model the volatility time-series, we define a number of jump
diffusion models nested within the SDE:

dXt = µθ(Xt, t)dt+ σθ(Xt, t)dWt + dPt

dPt = J(Xt, żt)dNt
(6.1)

with jump intensity λθ(Xt, t), that aim to replicate the salient features and
dynamics of the volatility series. Using the generalised quadratic framework of
Section ??, we can formulate a template for Equation 6.1 that can be used to
fit various forms of drift, diffusion, and jump specifications. For purposes of
modelling the drift of the volatility series, we make use of linear mean reverting
drift structures of the form:

µθ(Xt, t) = α(β + h(t,θ)−Xt). (6.2)
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Here, β + h(t,θ) represents a possibly fluctuating level to which the process
reverts over time. Using this formulation we can recover standard mean reversion
structures such as the CIR and Ornstein-Uhlenbeck models by setting h(t,θ) = 0
and test for the presence of volatility cycles by replacingh(t,θ) with a periodic
function. For example in this case, we let

h(t, ν1, ν2) = ν1 sin
(
8π(t+ 0.25(ν2 − 0.5))

)
(6.3)

for ν1 > 0 and ν2 ∈ [0, 1], which specifies a quarterly volatility cycle. Due to
the mean reverting structure, the model process will subsequently have long-
run mean dynamics that mimic the behaviour of the term β + h(t, ν1, ν2). For
purposes of modelling the diffusion dynamics of the volatility series we assume
various forms for the diffusion coefficient where

σθ(Xt, t) =


σ for constant volatility,

σ
√
Xt for linear instantaneous variance,

σXt for quadratic instantaneous variance.

(6.4)

Similarly, in order to model the jump dynamics of the process, we alternate
between combinations of constant and state dependence coefficients of the jump
mechanism where the intensity coefficient is defined as

λθ(Xt, t) =

{
κ for constant intensity,

κXt for relative intensity,
(6.5)

and the jump coefficient assumes the form

J(Xt, żt) =

{
żt for constant jump size,

żtXt for relative jump size,
(6.6)

and it is assumed that jumps are normally distributed i.e.,

φ(żt, µz, σ
2
z) = N(µz, σ

2
z) =

1√
2πσ2

z

exp

(
− (żt − µz)2

2σ2
z

)
. (6.7)

Table 3 gives various forms of drift, diffusion and jump mechanisms fitted to
the VXGOG series. Using the methodology of sections 3 and 5 in conjunction with
the RWMH algorithm, we are able to efficiently calculate parameter estimates and
deviance information criterion (DIC) statistics for the various model specifications.
For each case we place prior distributions on the parameters of the model as
indicated in Table 4. For reference, we also include a sample jump-free models
that fit within the forgoing assumptions. Corresponding parameter estimates
and 90% credibility intervals are given in tables 5 - 7.
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Mod. µ(Xt, t) σ(Xt, t) λ(Xt, t) J(Xt, żt) żt ∼ DIC pD

1 α(β −Xt) σ · · · 5776.10 2.77

2 α(β −Xt) σ
√
Xt · · · 5627.37 2.99

3 α(β −Xt) σXt · · · 5482.72 3.22

4 α(β −Xt) σ
√
Xt κ żt N(µz , σ2

z) 4832.27 6.28

5 α(β −Xt) σXt κ żt N(µz , σ2
z) 4798.80 5.69

6 α(β −Xt) σXt κXt żt N(µz , σ2
z) 4784.03 5.61

7 α(β −Xt) σXt κ żtXt N(µz , σ2
z) 4778.91 6.16

8 α(β + h(t, ν1, ν2)−Xt) σXt κ żt N(µz , σ2
z) 4767.67 8.35

9 α(β + h(t, ν1, ν2)−Xt) σXt κXt żt N(µz , σ2
z) 4752.46 8.30

10 α(β + h(t, ν1, ν2)−Xt) σXt κ żtXt N(µz , σ2
z) 4744.02 7.54

Table 3
Various drift, diffusion, and jump mechanism specifications for the Google equity VIX series.
Approximate deviance information criterion (DIC) and fitted effective number of parameters
(pD) are also tabulated for exach model (minimum DIC value indicated in bold). The results
suggest that the observed series exhibits time-inhomogeneous linear drift with state-dependent

diffusion. In addition, there is evidence to suggest state-dependence within the jump
mechanism of the process.

Parameter Prior distribution

α Gamma(0.001, 0.001)

β Normal(25, 52)

σ2 Inv-Gamma(0.001, 0.001)

κ Gamma(0.001, 0.001)

ν1 Gamma(0.001, 0.001)

ν2 Beta(0.5, 0.5)

Table 4
Prior distributions on the parameter space. Where the relevant terms are included in given

model, the corresponding prior distributions are applied. Although the prior distributions used
here are mostly weakly informative, the prior distributions on β and ν2 follow from basic

inspection of the time series.

Model 1 Model 2 Model 3 Model 4

Est. 90%CI Est. 90%CI Est. 90%CI Est. 90%CI

α 15.07 (10.63, 19.26) 15.30 (11.30, 19.07) 13.36 (9.82, 17.28) 7.40 (5.10, 9.66)

β 26.40 (24.88, 27.83) 26.50 (25.01, 27.96) 27.04 (25.58, 28.79) 27.49 (25.49, 29.42)

σ 32.77 (31.80, 33.63) 6.10 (5.91, 6.30) 1.12 (1.09, 1.16) 3.38 (3.20, 3.54)

λ · · · · · · 23.97 (18.94, 30.72)

µz · · · · · · -0.42 (-1.20, 0.33)

σz · · · · · · 4.90 (4.28, 5.67)

Table 5
Parameter estimates and 90% credibility intervals for models 1 to 4. Estimates for each model
are calculated from 110000 random walk Metropolis-Hastings updates with a burn-in period of

10000 iterations.



Pienaar & Varughese/Likelihood Inference for Non-Linear Jump Diffusions 61

Model 5 Model 6 Model 7 Model 8

Est. 90%CI Est. 90%CI Est. 90%CI Est. 90%CI

α 6.55 (4.24, 8.92) 6.30 (3.57, 9.31) 6.44 (4.03, 8.89) 10.69 (7.25, 13.75)

β 27.95 (25.76, 30.56) 27.97 (25.73, 30.88) 27.71 (25.39, 30.41) 26.97 (25.70, 28.43)

σ 0.67 (0.64, 0.70) 0.66 (0.64, 0.69) 0.65 (0.61, 0.68) 0.66 (0.63, 0.70)

λ 20.47 (14.66, 26.89) 0.85 (0.65, 1.09) 28.60 (21.37, 37.88) 21.52 (15.33, 27.96)

µz -0.50 (-1.39, 0.37) -0.53 (-1.43, 0.29) -0.01 (-0.03, 0.01) -0.35 (-1.26, 0.41)

σz 5.17 (4.39, 6.10) 4.93 (4.23, 5.81) 0.15 (0.13, 0.17) 5.03 (4.34, 5.77)

ν1 · · · · · · 6.70 (4.89, 8.82)

ν2 · · · · · · 0.56 (0.52, 0.62)

Table 6
Parameter estimates and 90% credibility intervals for models 5 to 8. Estimates for each model
are calculated from 110000 random walk Metropolis-Hastings updates with a burn-in period of

10000 iterations.

Model 9 Model 10

Est. 90%CI Est. 90%CI

α 10.28 (6.84, 13.46) 10.71 (7.76, 14.09)

β 27.03 (25.71, 28.66) 26.72 (25.43, 28.03)

σ 0.66 (0.63, 0.69) 0.64 (0.61, 0.68)

λ 0.88 (0.63, 1.17) 28.09 (20.78, 35.40)

µz -0.31 (-1.15, 0.43) 0.00 (-0.03, 0.02)

σz 4.89 (4.13, 5.81) 0.15 (0.13, 0.17)

ν1 6.74 (4.77, 9.09) 6.53 (4.79, 8.70)

ν2 0.56 (0.52, 0.61) 0.56 (0.51, 0.61)

Table 7
Parameter estimates and 90% credibility intervals for models 9 to 10. Estimates for each

model are calculated from 110000 random walk Metropolis-Hastings updates with a burn-in
period of 10000 iterations.

Although the model space presented here is by no means exhaustive (the set
of models considered here represent the best performing models among a number
of additional specifications), the models serve as a basis for testing a number of
hypotheses with regard to the volatility series. Using the approximate DIC values
as a guide for comparing the various model specifications, we can identify which
elements improve model fit and thus which elements most accurately replicate
the observed dynamics. Within the jump-free model set, the fit is improved for
models with diffusion coefficients which are more sensitive to changes in the state
of the process. This suggests that the volatility of the volatility process increases
in accordance with the level of the process. Perhaps the greatest improvement
in model fit stems from including a jump mechanism in the diffusion model.
Although this comes at the cost of three additional parameters, the jump
diffusion models fair significantly better than their corresponding jump-free
models. Despite the addition of the jump mechanism, model fit is still improved
for models with greater state-dependence in volatility. With respect to the jump
mechanism itself, there is evidence that jump magnitudes may indeed vary in
accordance to the level of the process. Finally, by including a quarterly drift
cycle we can further improve model fit.
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by assuming that κij(t) = 0 ∀ i+ j > m the truncated CGF is given by:

K(d)(α, β, t) =
∑
i+j≤d

αiβj

i!j!
κij(t). (E.1)

For bivariate GQDs under an (even) d-th order truncation, the saddlepoint
approximation (Renshaw, 2000) is given by:

f
(d)
SPT (Xt, Yt|Xs, Ys) =

exp
(
K(m)(α0, β0)− α0Xt − β0Yt

)
2π
√

∂2K(d)

∂α2
∂2K(d)

∂β2 −
(
∂K(d)

∂α∂β

)2 , (E.2)

for

K(d)(α, β) = ακ10(t) +
α2

2
κ20(t) +

α3

6
κ30(t) +

α4

24
κ40(t) + . . .+

αd

d!
κd0(t)

+ βκ01(t) +
β2

2
κ02(t) +

β3

6
κ03(t) +

β4

24
κ04(t) + . . .+

βd

d!
κ0d(t)

+ αβκ11(t) +
α2β

2
κ21(t) +

αβ2

2
κ12(t) + . . .+

αd/2βd/2

(d/2)!)2
κ((d/2)(d/2)(t) + . . .

+
αd−1β

(d− 1)!
κ(d−1)1(t) +

αβd−1

(d− 1)!
κ1(d−1)(t),

(E.3)
where α0 and β0 solves the system:

∂K(d)

∂α
(α, β) = Xt,

∂K(d)

∂β
(α, β) = Yt.

(E.4)

Since the saddlepoint approximation requires evaluation of the cumulants,
we need relate the respective moments to their cumulant counterparts. Again,
this can be achieved using the moment and cumulant relations outlined in
Appendix C.
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