The goal of this package is to estimate parameters from a linear model when the data comes from a truncated normal distribution with censoring. Maximum likelihood values are returned. There are multiple method available for optimization with the default set as conjugate gradient. This package is also able to return maximum likelihood estimates for truncated only or censored only data similar to truncreg
and censReg
packages.
You can install tcensReg
from CRAN for the stable release or install the GitHub verion for the active development version:
Some common examples where this type of problem may arise is when there is a natural truncation imposed by the structure of the data. For instance several applications have an implied zero truncation such as product lifetimes, age, or detection thresholds. To show how to implement the functions within the package, I will demonstrate a simple simulation example.
Assume that we have observations from an underlying truncated normal distribution. In our case we will assume a zero-truncated model by setting a=0. We generate this truncated normal data below and refer to it as y_star
.
#loading the package
library(tcensReg)
mu <- 0.5
sigma <- 0.5
a <- 0
#generate random values from the truncated normal distribution using tcensReg function
y_star <- rtnorm(n=1000, mu=mu, sd=sigma, a=a)
#note that the lowerbound will always be non-negative
round(range(y_star), 3)
## [1] 0.003 2.063
Next, we can imagine a scenario where we have an imprecise measurement of y_star
leading to censoring. In our case we assume that values below a limit of detection, nu
, are censored. This creates a random variable y
.
In the example below we set our limit of detection as nu
=0.25.
nu <- 0.25
y <- ifelse(y_star <= nu, nu, y_star)
#calculating the number of censored observations
sum(y == nu)/length(y)
## [1] 0.182
We can observe the histogram and density plot for the uncensored data, which shows the zero-truncation.
We can then compare this to the censored observations below
We can then estimate the mean, mu
, and standard deviation, sigma
, using y
with the tcensReg
package as shown below.
## $theta
## Estimate
## (Intercept) 0.5067501
## log_sigma -0.6774143
##
## $convergence
## [1] 0
##
## $initial_ll
## [1] -691.7561
##
## $final_ll
## [1] -677.5373
##
## $var_cov
## (Intercept) log_sigma
## (Intercept) 0.0008743094 -0.0008562579
## log_sigma -0.0008562579 0.0015877418
##
## $method
## [1] "CG"
Note that the this will return parameter estimates, variance-covariance matrix, the number of iterations until convergence, and the initial/final log-likelihood values.
Comparing the values to the truth we see that the estimates are unbiased.
#tcensReg model
output <- tcensReg(y ~ 1, data=dt, a=a, v=nu)
#extracting the point estimates
tcensReg_est <- output$theta
#exponentiating the estimate of log_sigma to obtain sigma
tcensReg_est[2] <- exp(tcensReg_est[2])
#OLS model
lm_output <- lm(y ~ 1, data=dt)
lm_est <- c(coef(lm_output), summary(lm_output)$sigma)
#censored only model, i.e., Tobit model
cens_output <- tcensReg(y ~ 1, data=dt, v=nu)
## Warning: `a` is not specified indicating no truncation
cens_est <- cens_output$theta
cens_est[2] <- exp(cens_est[2])
results_df <- data.frame(rbind(c(mu, sigma),
t(tcensReg_est),
lm_est,
t(cens_est)))
names(results_df) <- c("mu", "sigma")
row.names(results_df) <- c("Truth", "tcensReg", "Normal MLE", "Tobit")
results_df$mu_bias <- abs(results_df$mu - mu)
results_df$sigma_bias <- abs(results_df$sigma - sigma)
knitr::kable(results_df, format="markdown", digits=4)
mu | sigma | mu_bias | sigma_bias | |
---|---|---|---|---|
Truth | 0.5000 | 0.5000 | 0.0000 | 0.0000 |
tcensReg | 0.5068 | 0.5079 | 0.0068 | 0.0079 |
Normal MLE | 0.6746 | 0.3759 | 0.1746 | 0.1241 |
Tobit | 0.6300 | 0.4424 | 0.1300 | 0.0576 |
Other methods result in significant bias for both mu
and sigma
.
As an extension for the single population model above, we can imagine a two independent truncated normal random variables that have common censoring and truncation values but different standard deviations.
We can simulate the underlying truncated normal distributions Y1_star
and Y2_star
similar to \(Y\) above except now we allow them to have separate mean and variances.
For this example we let mu_1
=0.5, mu_2
=1, sigma_1
=0.25, sigma_2
=2, and a
=0.
mu_1 <- 0.5
mu_2 <- 1
sigma_1 <- 0.25
sigma_2 <- 2
a <- 0
y_1_star <- rtnorm(1000, mu = mu_1, sd = sigma_1, a = a)
y_2_star <- rtnorm(1000, mu = mu_2, sd = sigma_2, a = a)
df <- data.frame(y_star = c(y_1_star, y_2_star),
group = c(rep("Population 1", length(y_1_star)),
rep("Population 2", length(y_2_star))))
Plotting each of these uncensored population densities, we can see the difference in shape based on the underlying parameter selection.
Then censoring each observation at nu
, we are left with Y1
and Y2
. Again, we let nu
=0.25.
We then can fit our model with separate variances for each group using the command tcensReg_sepvar
as shown below.
mod_result <- tcensReg_sepvar(y ~ group, a=a, v=nu, group_var="group", method="maxLik", data=df)
mod_result
## $theta
## (Intercept) groupPopulation 2 log_sigma1 log_sigma2
## 0.5002256 0.6074030 -1.3921394 0.6246513
##
## $convergence
## [1] 2
##
## $initial_ll
## [1] -1891.114
##
## $final_ll
## [1] -1816.653
##
## $var_cov
## (Intercept) groupPopulation 2 log_sigma1
## (Intercept) 7.638326e-05 -7.638326e-05 -6.980312e-05
## groupPopulation 2 -7.638326e-05 2.371045e-02 6.980312e-05
## log_sigma1 -6.980312e-05 6.980312e-05 8.025460e-04
## log_sigma2 -3.797823e-22 -6.125757e-03 4.366464e-21
## log_sigma2
## (Intercept) -3.797823e-22
## groupPopulation 2 -6.125757e-03
## log_sigma1 4.366464e-21
## log_sigma2 2.231303e-03
##
## $method
## [1] "maxLik"
sepvar_est <- mod_result$theta
sepvar_est[3:4] <- exp(sepvar_est[3:4])
results_df <- data.frame(rbind(c(mu_1, mu_2, sigma_1, sigma_2),
t(sepvar_est)))
names(results_df) <- c("mu_1", "mu_2", "sigma_1", "sigma_2")
row.names(results_df) <- c("Truth", "tcensReg")
results_df$mu1_bias <- abs(results_df$mu_1 - mu_1)
results_df$mu2_bias <- abs(results_df$mu_2 - mu_2)
results_df$sigma1_bias <- abs(results_df$sigma_1 - sigma_1)
results_df$sigma2_bias <- abs(results_df$sigma_2 - sigma_2)
knitr::kable(results_df, format="markdown", digits=4)
mu_1 | mu_2 | sigma_1 | sigma_2 | mu1_bias | mu2_bias | sigma1_bias | sigma2_bias | |
---|---|---|---|---|---|---|---|---|
Truth | 0.5000 | 1.0000 | 0.2500 | 2.0000 | 0e+00 | 0.0000 | 0.0000 | 0.0000 |
tcensReg | 0.5002 | 0.6074 | 0.2485 | 1.8676 | 2e-04 | 0.3926 | 0.0015 | 0.1324 |
Note also that the tcensReg
can also estimate parameters in the censored-only or truncated-only cases. We show below that by using analytic values in the tcensReg implementation that our method is faster then the alternative estimation procedures while providing better variance estimates. With a small set of covariates and p<<n
we can use the Newton Raphson method of optimization, which is computationally fast with few covariates.
library(microbenchmark)
#testing the censored-only regression
library(censReg)
cens <- microbenchmark(tcensReg_method = tcensReg(y ~ 1, data=dt, v=nu, method="Newton"),
censReg_method = censReg(y ~ 1, left=nu, data=dt))
knitr::kable(summary(cens), format="markdown", digits=4)
expr | min | lq | mean | median | uq | max | neval | cld |
---|---|---|---|---|---|---|---|---|
tcensReg_method | 4.9092 | 5.0706 | 5.7085 | 5.2077 | 5.9201 | 14.9288 | 100 | a |
censReg_method | 13.7895 | 14.2633 | 19.3137 | 16.2156 | 21.7183 | 107.0266 | 100 | b |
#point estimates are equivalent
tcensReg_est <- as.numeric(tcensReg(y ~ 1, data=dt, v=nu, method="Newton")$theta)
censReg_est <- as.numeric(coef(censReg(y ~ 1, left=nu, data=dt)))
all.equal(tcensReg_est, censReg_est)
## [1] TRUE
#testing the truncated-only regression
library(truncreg)
trunc <- microbenchmark(
tcensReg_method = tcensReg(y_star ~ 1, data=dt, a=a, method="Newton"),
truncreg_method = truncreg(y_star ~ 1, point=a, data=dt))
knitr::kable(summary(trunc), format="markdown", digits=4)
expr | min | lq | mean | median | uq | max | neval | cld |
---|---|---|---|---|---|---|---|---|
tcensReg_method | 8.5105 | 8.8282 | 9.5156 | 9.0185 | 9.3748 | 15.0493 | 100 | a |
truncreg_method | 26.2514 | 27.4374 | 30.3957 | 29.9568 | 32.9080 | 42.2670 | 100 | b |
tcensReg_est <- as.numeric(tcensReg(y_star ~ 1, data=dt, a=a, method="Newton")$theta)
#note truncreg returns sigma not log_sigma so we need to exponentiate our value
tcensReg_est[2] <- exp(tcensReg_est[2])
truncreg_est <- as.numeric(coef(truncreg(y_star ~ 1, point=a, data=dt)))
all.equal(tcensReg_est, truncreg_est)
## [1] "Mean relative difference: 7.465878e-08"