
Package ‘IPMpack’
February 19, 2015

Type Package

Title Builds and analyses Integral Projection Models (IPMs).

Version 2.1

Date 2012-7-4

Author CJE Metcalf, SM McMahon, R Salguero-Gomez, E Jongejans, C Merow

Maintainer Sean McMahon <ipmpack@gmail.com>

Description IPMpack takes demographic vital rates and (optionally) environmental data to build inte-
gral projection models. A number of functional forms for growth and survival can be incorpo-
rated, as well as a range of reproductive strategies. The package also includes a suite of diagnos-
tic routines, provides classic matrix model output (e.g., lambda, elasticities, sensitivi-
ties), and produces post-hoc metrics (e.g., passage time and life expectancy).

License GPL

LazyLoad yes

Depends Matrix, MASS, nlme

Suggests MCMCglmm, truncnorm, mvtnorm, methods, MCMCpack, fields

NeedsCompilation no

Repository CRAN

Date/Publication 2014-03-17 03:08:17

R topics documented:
IPMpack-package . 3
addPdfGrowthPic . 4
coerceGrowthObj . 5
convergeIPM . 7
convertIncrement . 9
dataIPMpackCryptantha . 10
dataIPMpackHypericum . 11
dataIPMpackHypericumCov . 15
dataIPMpackSilwood . 17
dataIPMpackSuccisa . 18

1

2 R topics documented:

dataIPMpackSuccisa2 . 20
diagnosticsPmatrix . 21
discreteTrans-class . 24
discreteTransInteger-class . 25
elas . 26
envMatrix-class . 27
fecObj-class . 28
fecObjInteger-class . 29
generateData . 30
growSurv . 31
growth . 32
growth-methods . 33
growthCum . 35
growthCum-methods . 36
growthModelComp . 36
growthObj-class . 38
growthObjDeclineVar-class . 39
growthObjHossfeld-class . 39
growthObjIncr-class . 40
growthObjIncrDeclineVar-class . 41
growthObjLogIncr-class . 42
growthObjLogIncrDeclineVar-class . 42
growthObjNegBin-class . 43
growthObjPois-class . 44
growthObjTruncIncr-class . 44
Hossfeld . 45
invLogit . 46
IPMmatrix-class . 46
IPMpackNews . 47
largeMatrixCalc . 48
makeClonalObj . 49
makeCompoundCmatrix . 52
makeCompoundFmatrix . 53
makeCompoundPmatrix . 56
makeDiscreteTrans . 58
makeDiscreteTransInteger . 60
makeEnvObj . 62
makeFecObj . 63
makeFecObjInteger . 66
makeGrowthObj . 69
makegrowthObjHossfeld . 71
makeIntegerFmatrix . 72
makeIPMCmatrix . 75
makeIPMFmatrix . 77
makeIPMmatrix . 79
makeIPMPmatrix . 80
makeOffspringObj . 83
makeSurvObj . 85

IPMpack-package 3

meanLifeExpect . 86
passageTime . 88
picGrow . 89
picSurv . 90
plotGrowthModelComp . 91
predictFutureDistribution . 93
R0Calc . 94
sampleIPM . 95
sampleIPMOutput . 98
sampleSequentialIPMs . 101
sampleVitalRateObj . 102
sensParams . 105
simulateCarlina . 109
sizeToAge . 112
stochGrowthRateManyCov . 113
stochGrowthRateSampleList . 115
stochPassageTime . 116
surv . 118
surv-methods . 119
survivorship . 119
survObj-class . 120
survObjOverDisp-class . 121
timeToSize . 121
varLifeExpect . 123
varPassageTime . 124
wrapHossfeld . 125

Index 127

IPMpack-package Construction and analysis of integral projection models and associ-
ated measures of population growth, structure, perturbations (sen-
sitivities and elasticities), overall population dynamics, age-specific
metrics, etc.

Description

IPM package, a series of analytical tools for building, diagnosing, and projecting populations mod-
els based on continuous and descrete vital rates.

Details

Package: IPMpack
Type: Package
Version: 1.3
Date: 2012-June-12
License: GPL
LazyLoad: yes

4 addPdfGrowthPic

Depends: MCMCglmm, Matrix, MASS, nlme

Author(s)

The IPMpack team: C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke
Jongejans & Cory Merow. Maintainer: ipmpack-users@lists.r-forge.r-project.org; ipmpack@gmail.com
User mailing list: https://lists.r-forge.r-project.org/mailman/listinfo/ipmpack-users

addPdfGrowthPic Adds probability density functions of density function of size or incre-
ment given current size and growth to plots.

Description

Function generates pdfs (probability density functions) corresponding to chosen sizes and adds
them to a figure using growth methods.

Usage

addPdfGrowthPic(respType = "sizeNext", sizesPlotAt = c(20, 50, 60),
sizeRange = c(20, 400), incrRange = c(-10, 50),
scalar = 100, growthObjList,
cols = 1:5,
cov = data.frame(covariate=1),
minShow = 1e-2,
jitt = 2,
...)

Arguments

respType character string identifying the response variable for the growthModelComp.
wither "sizeNext", "logincr" or "incr". Defaults to sizeNext.

sizesPlotAt vector, list of sizes at which pdfs should be plotted.

sizeRange sizeRange for which pdf should be estimated

incrRange increment range for which pdf should be estimated

scalar value by which pdf may be multiplied to improve visibility

growthObjList list of growth objects for which pdfs are desired to be plotted

cols colours corresponding to the list of growth objects for plotting

cov a data-frame with one row containing all covariates other than size related co-
variates; defaults to 1; will be ignored if no covariates are fitted

coerceGrowthObj 5

minShow minimum value below which pdf lines will not be shown (to avoid ugly vertical
lines)

jitt amount by which sequential pdfs should be separated on the x axis, for visibility

... extra arguments to pass to the plot function.

Value

none

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeGrowthObj,makeSurvObj,plotGrowthModelComp, plotSurvModelComp

Examples

Data with size and sizeNext
dff <- generateData()

a1 <- growthModelComp(dff, makePlot = TRUE)
addPdfGrowthPic(respType = "sizeNext",
sizesPlotAt = c(2, 6, 10), scalar = 1, jitt = 0.1,
sizeRange = c(-5, 25),
growthObjList = a1$growthObjects, cols = 2:5)

coerceGrowthObj Function to coerce growth or survival objects, i.e., impose user-
defined parameters

Description

Supplied with a growth and survival object, over-writes coefficients, and for growth, the sd of
growth

Usage

coerceGrowthObj(growthObj, coeff, sd)
coerceSurvObj(survObj,coeff)

6 coerceGrowthObj

Arguments

growthObj an object of class growthObj

survObj an object of class survObj

coeff a numeric vector

sd a numeric vector of length 1

Details

These functions can be used to impose coefficients and sd on growth and survival objects where
direct fitting is not desired

Value

an object of class growthObj / survObj

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeSurvObj, makeGrowthObj

Examples

dff<-generateData()

#for growth
gr1 <- makeGrowthObj(dataf=dff,
Formula=sizeNext~size,regType="constantVar")

#halve the slope
gr2 <- coerceGrowthObj(gr1,coeff=c(gr1@fit$coefficients[1],

gr1@fit$coefficients[2]*0.5),
sd=gr1@sd)

par(mfrow=c(1,2),pty="s")
picGrow(dff,gr1)
picGrow(dff,gr2)

#for survival
sv1 <- makeSurvObj(dataf=dff,
Formula=surv~size)

#halve the slope
sv2 <- coerceSurvObj(sv1,coeff=c(sv1@fit$coefficients[1],

sv1@fit$coefficients[2]*0.5))

par(mfrow=c(1,2),pty="s")

convergeIPM 7

picSurv(dff,sv1)
picSurv(dff,sv2)

convergeIPM Iterates until obtaining the number of bins required so that the differ-
ence in the chosen measure (lambda, R0, life expectancy of a chosen-
Bin) falls below a chosen tolerance level

Description

Increases bin number by a specified binIncrease until the difference in the chosen measure falls
below a tolerance level

Usage

convergeIPM(growObj, survObj, fecObj, nBigMatrix, minSize, maxSize,
discreteTrans = 1, integrateType = "midpoint",
correction = "none", preCensus = TRUE, tol=1e-4,
binIncrease=5, chosenBin=1, response="lambda")

Arguments

growObj a growth object.

survObj a survival object.

fecObj a fecundity object.

nBigMatrix numeric, initial number of bins of size used in the matrix - will be increased for
the assessment

minSize numeric, minimum size used for meshpoints

maxSize numeric, maximum size used for meshpoints of the P matrix.

discreteTrans matrix of discrete transitions; or 1 if there is none

integrateType integration type.

correction correction (see makeIPMPmatrix)

preCensus boolean defining whether fecundity is pre or post census; defaults to pre

tol desired tolerance level

binIncrease increments in increase in the number of bins (should be an integer)

chosenBin desired bin for which life expectancy should be assessed; default is 1st.

response what variable is convergence to be tested for; options are "lambda", "R0", "life-
Expect"; for the latter, the desired bin should be considered

8 convergeIPM

Details

Different choices for responses will yield different values. The pattern of change in lambda (or
other response variables) can be complex, so it is advisable to start with large binIncrease and small
tolerance, and then once one knows a general idea of how big the matrix needs to be, run the
function again with a smaller binIncrease but start it closer to the goal.

For the life expectancy option, if discrete stages are included via discreteTrans then if chosenBin=1,
this function will use the first discrete bin.

Value

binIncrease the number of bins used to increase matrix size in assessing tolerance

Pmatrix the final Pmatrix if only LE is being considered

IPM the final IPM

R0 the final R0

lambda the final lambda

LE the final vector of life expectancies

Note

This code was modified from original code by Melissa Eitzel.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

diagnosticsPmatrix

Examples

dff<-generateData()
gr1<-makeGrowthObj(dff)
sv1<-makeSurvObj(dff)
fv1<-makeFecObj(dff,Transform="log")

res <- convergeIPM(growObj=gr1,
survObj=sv1, fecObj=fv1,
nBigMatrix=10, minSize=-2,
maxSize=15,discreteTrans = 1,
integrateType = "midpoint",
correction = "none",
preCensus = TRUE, tol=1e-3,binIncrease=10)

res <- convergeIPM(growObj=gr1,
survObj=sv1, fecObj=fv1,
nBigMatrix=10, minSize=-2,
maxSize=15,discreteTrans = 1,

convertIncrement 9

integrateType = "midpoint",
correction = "none",
preCensus = TRUE, tol=1e-3,
binIncrease=10, response="R0")

res <- convergeIPM(growObj=gr1, survObj=sv1, fecObj=fv1,
nBigMatrix=10, minSize=-2,
maxSize=15,discreteTrans = 1,
integrateType = "midpoint",
correction = "none",
preCensus = TRUE, tol=1e-3,binIncrease=10,
response="lifeExpect")

convertIncrement Convert size increment according to time elapsed between censuses.

Description

Adjusts the intervals of census data that is not annual to report output on population dynamics on
an annual basis.

Usage

convertIncrement(dataf, nYrs = 1)

Arguments

dataf a dataframe with columns ‘size’ ‘sizeNext’, ‘exactDate’, ‘exactDateNext’.

nYrs the number of years between sequential measurements (i.e. if census interval is
5, nYrs = 5, if census interval is 3 times a year, nYrs = 0.333).

Details

In some data sets the time interval between census measurements can be different than one year.
In some species demographic information is recorded several times within a year, while in others,
particularly in "slow-living" species (e.g. trees) the census frequency is greater than one year and/or
vary across intervals. This function takes a data frame dataf and uses columns with the term
extractData to adjust the size increment to the number of years given in nyears. It defaults to
annual.

Value

Returns the adjusted increments.

10 dataIPMpackCryptantha

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Sampling three times/year (nYrs = 0.333): Smith, Caswell & Mettler-Cherry. Stochastic flood and
precipitation regimes and the population dynamics of a threatened floodplain plant. Ecological
Applications 15, p1036-1052.

Sampling every five years (nYrs = 5): van Mantgem & Stepheson. 2005. The accuracy of ma-
trix population model projections for coniferous trees in the Sierra Nevada, California. Journal of
Ecology 93, p737-747.

dataIPMpackCryptantha Cryptantha Perennial Dataset with Covariates

Description

Demographic data of Cryptantha flava in the "Redfleet State Park", UT, USA. Life cycle, exper-
imental design and data are described in Salguero-Gomez et al (2012). Data contains a sub-
set of individuals from 2004 to 2010. Full dataset can be obtained upon request to the authors
(salguero@demogr.mpg.de and bcasper@sas.upenn.edu).

Usage

data(dataIPMpackCryptantha)

Format

The format is: chr "dataIPMpackCryptantha"

Details

Data-frame with headings:

- ID: unique plant id (this file contains only a subset of all individuals)

- treatment: the full experimental design contain to droughts (in 1998 and 1999) but this subset
contains only info on the control permanent plots. See Lucas et al J Ecol 2008

- site: spatial replication site

- plot: plot number

- quadrat: quadrat number inside of plot

- x: x coordinate (cm) inside of the quadrat

- y: y coordinate (cm) inside of the quadrat

- shrub: shrub species within the zone of influence of the individual (At = Artemisia tridentata; Cn
= Chrysothamnus nauseosus)

dataIPMpackHypericum 11

- compass: compass direction of the line connecting the centroid of the shrub and the individual of
Cryptantha flava

- distance: distance (in cm) of the individual of Cryptantha flava to the shrub. Negative distance
imply the individual is "inside" the shrub. Zero implies the individual is at the edge of the shrub’s
canopy.

- year: transition from t to t+1 (this subset contains only data for 2004-2010)

- prec: annual precipitation (in cm) from June of year t-1 to May of year t

- age: age of individual (in years) in year t. Individuals of unknown age are assigned to 999

- size: total number of rosettes (vegetative and flowering) of the individual in year t

- fec0: probability of reproduction (0: vegetative, 1: flowering; NA: individual not alive) in year t

- fec1: number of flowering rosettes in year t (NA: fec0 = 0 or NA)

- surv: survival (0 = dead, 1= alive, NAs if not yet recruited)

- precNext: annual precipitation (in cm) from June of year t to May of year t+1

- ageNext: age of individual (in years) in year t+1. Individuals of unknown age are assigned to 999

- sizeNext: total number of rosettes (vegetative and flowering) of the individual in year t+1

Author(s)

Rob Salguero-Gomez & Brenda B Casper

References

Salguero-Gomez R, Siewert W, Casper B & Tielboerger K. Oct 2012. A demographic approach to
study effects of climate change in desert plants. Philosophical Transactions of the Royal Society.
Series B - Biological Sciences x, pxxx-xxx

Lucas R, Forseth I, Casper B. 2008. Using rainout shelters to evaluate climate change effects on the
demography of Cryptantha flava. Journal of Ecology 96, p514-522

Examples

data(dataIPMpackCryptantha)
print(head(dataIPMpackCryptantha))

dataIPMpackHypericum Hypericum Perennial Dataset

Description

Demographic data of Hypericum cumulicola in "Florida rosemary scrub at" Archbold Biological
Station (FL, USA). Life cycle, experimental design and data are described in Quintana-Ascencio
& Menges (2003). Data contains a subset of individuals from population "bald 1" and annual
period "1997-1998". Full dataset can be obtained upon request to the authors (pedro.quintana-
ascencio@ucf.edu).

12 dataIPMpackHypericum

Usage

data(dataIPMpackHypericum)

Format

The format is: chr "dataIPMpackHypericum"

Details

data-frame with headings:

- id: unique plant id (this file contains only a subset of all individuals)

- bald: population (this subset contains only one population)

- year: transition from t to t+1 (this subset contains only data for 1997-1998)

- size: length of longest stem in individual (cm) in time t

- ontogeny: recruits vs established individuals in time t (1 = individual was recruited in time t, 0 =
already established individual prior to time t, NA = individual not yet recruited in time t)

- fec0: probability of reproduction (0= no flowering, 1 = individual was flowering in time t, NA =
individual not alive in year t)

- fec1: number of fruits per plant (NA if fec0 = 0)

- surv: survival (0 = dead, 1= alive, NAs if not yet recruited or past dead)

- sizeNext: length of longest stem in individual (cm) in time t+1

- ontogenyNext: recruits vs established individuals in time t+1 (1 = individual was recruited in time
t+1, 0 = already established individual prior to time t+1, NA = individual not yet recruited or dead
in t+1)

Author(s)

Pedro Quintana Ascencio & Eric Menges

References

Quintana-Ascencio, Menges & Weekley. 2003. A fire-explicit population viability analyses of
Hypericum cumulicola in Florida Rosemary scrub. Conservation Biology 17, p433-449.

Examples

#Access data from the long-term censuses on Hypericum cumulicula
carried out by Eric Menges, Pedro Quintana-Ascencio and coworkers
at Archbold Biological Station. Here only a subset of individuals
from population 'bald 1' and for the annual transition '1997-1998' are shown.
data("dataIPMpackHypericum")
d<-dataIPMpackHypericum

#Variables are:
#id: unique identifier for each individual
#bald: population. Here only bald 1

dataIPMpackHypericum 13

#year: annual transition of the long-term data. Here only 1997-1998
#surv: survival (1) or not (0) of individuals between 1997 and 1998
#size: maximum height of the stems of each individual
#ontogeny: because the demography of Hypericum is very dynamic
(turnover is very high) the experimental design described
in Quintana-Ascencio et al. (2003) consists on establishing
new permanent plots every year at each population,
in addition to censusing old plots. Here we differentiate
between individuals that appear for the first time in time t
because they were recruits (1) and those that, not being new
recruits, where measured for the first time in t because they
were in a new permanent plot.
#fec0: probability of flowering (1) or not (0)
#fec1: number of fruits per individual
#sizeNext: same as "size" above, for t+1
#stageNext: same as "stage" above, for t+1

#Due to the sampling design described above, here we consider only
individual with a certain recruit origin:
d <- subset(d,is.na(d$size)==FALSE | d$ontogenyNext==1)

#Side-experiments revealed that the following vital rates are size-independent
and equal to:

#Number of seeds produced per fruit
fec2<-13.78

#Probability of seedling establishment
fec3<-0.001336

#Probability of seedling survival half a year after germinating,
corresponding to the next annual census

fec4<-0.14
#Probability of a seed going into the seed bank

goSB<-0.08234528
#Probability of a seed staying in the seed bank

staySB<-0.672
#Note that the aforementioned vital rates are function of time since last fire,
#but because here we are only dealing with one population and one year
#transition, we treat them as constants. See Quintana-Ascencio et al (2003)
#for more information.

#A simple re-organization of the data, getting rid of non-critical information
d<-d[,c("surv","size","sizeNext","fec0","fec1")]

#The following states the continuous (max height of individual plant)
#part of the IPM. Note that the IPM to be constructed here contains a
#discrete stage: seedbank.
d$stageNext<-d$stage<-"continuous"
d$stage[is.na(d$size)]<-NA
#If individual did not survive, it is labelled as dead to t+1.
d$stageNext[d$surv==0]<-"dead"
#Adds probability of seeds going into (continuous -> seedbank),
#staying (seedbank -> seedbank) and leaving (continuous -> seedbank)
#the discrete stage.
d$number<-1

14 dataIPMpackHypericum

d$stage<-as.factor(d$stage)
d$stageNext<-as.factor(d$stageNext)

#Carry out comparisons to establish the best survival model
testSurv <- survModelComp(d, expVars = c(surv~1, surv~size,
surv~size + size2), testType = "AIC",makePlot = TRUE,legendPos = "bottomleft")

#Carry out comparisons to establish the best growth model
testGrow <- growthModelComp(d,expVars = c(sizeNext~1, sizeNext~size,

sizeNext~size + size2), regressionType = "constantVar",
testType = "AIC", makePlot = TRUE, legendPos = "bottomright")

#Create survival object using regression model indicated by testSurv
so <- makeSurvObj(d, Formula = surv~size + size2)
picSurv(d,so)

#Create growth object using regression model indicated by testGrown
go<-makeGrowthObj(d, Formula = sizeNext~size)
picGrow(d,go)
abline(a=0,b=1,lty=2)

#Create fecundity object using regression models
fo <- makeFecObj(d, Formula=c(fec0~size, fec1~size),

Family=c("binomial","poisson"),
Transform=c("none", "none"),
meanOffspringSize=mean(d[is.na(d$size)==TRUE &
is.na(d$sizeNext)==FALSE,"sizeNext"]),
sdOffspringSize=sd(d[is.na(d$size)==TRUE &
is.na(d$sizeNext)==FALSE,"sizeNext"]),
fecConstants=data.frame(fec2=fec2,fec3=fec3,fec4=fec4),
offspringSplitter=data.frame(seedbank=goSB,

continuous=(1-goSB)),
vitalRatesPerOffspringType=data.frame(seedbank=c(1,1,1,0,0),

continuous=c(1,1,1,1,1),
row.names=c("fec0","fec1",
"fec2","fec3","fec4")))

#Define discrete transition matrix
dto<-makeDiscreteTrans(d,
discreteTrans = matrix(c(staySB,(1-staySB)*fec3*fec4,
(1-staySB)*(1-fec3*fec4),0,
sum(d$number[d$stage=="continuous"&d$stageNext=="continuous"],
na.rm=TRUE),sum(d$number[d$stage=="continuous"&d$stageNext=="dead"],
na.rm=TRUE)),ncol=2,nrow=3,
dimnames=list(c("seedbank","continuous","dead"),
c("seedbank","continuous"))),
meanToCont = matrix(mean(d$sizeNext[is.na(d$stage)&
d$stageNext=="continuous"]),ncol=1,nrow=1,dimnames=list(c("mean"),
c("seedbank"))),
sdToCont = matrix(sd(d$sizeNext[is.na(d$stage)&
d$stageNext=="continuous"]),ncol=1,nrow=1,dimnames=list(c(""),
c("seedbank"))))

dataIPMpackHypericumCov 15

#choose number of bins for discretization in the IPM
nBigMatrix <- 100

#Create the P matrix describing growth-survival transitions
The argument correction="discretizeExtremes" places parts of the
growth distribution that fall
below minSize or above maxSize into the first and last bin
#
Pmatrix<-makeIPMPmatrix(growObj=go,survObj=so,discreteTrans=dto,

minSize=0,maxSize=80,nBigMatrix=nBigMatrix,
correction="discretizeExtremes")

#Create the F matrix descributing fecundity transitions
The argument correction="discretizeExtremes" places parts of the
continuous offspring distribution that fall
below minSize or above maxSize into the first and last bin
#
Fmatrix<-makeIPMFmatrix(fecObj=fo,

minSize=0,maxSize=80,nBigMatrix=nBigMatrix,
correction="discretizeExtremes")

#Build a P matrix reflecting only the continuous part of the model
and check that binning, etc is adequate
PmatrixContinuousOnly <- makeIPMPmatrix(growObj=go,

survObj=so,minSize=0,maxSize=70,nBigMatrix=nBigMatrix,
correction="discretizeExtremes")

diagnosticsPmatrix(PmatrixContinuousOnly,growObj=go,
survObj=so,dff=d, correction="discretizeExtremes")

#Form the IPM as a result of adding the P and F matrices
IPM <- Pmatrix + Fmatrix

#Population growth rate for the whole life cycle of Hypericum is
eigen(IPM)$value[1]
#Population growth rate excluding the seed bank stage is
eigen(IPM[2:(nBigMatrix+1),2:(nBigMatrix+1)])$value[1]

dataIPMpackHypericumCov

Hypericum Perennial Dataset with covariates

Description

Demographic data of Hypericum cumulicola in "Florida rosemary scrub at" Archbold Biological
Station (FL, USA). Life cycle, experimental design and data are described in Quintana-Ascencio
& Menges (2003). Data contains a subset of individuals from population "bald 1" and annual

16 dataIPMpackHypericumCov

period "1994-1999". Full dataset can be obtained upon request to the authors (pedro.quintana-
ascencio@ucf.edu).

Usage

data(dataIPMpackHypericumCov)

Format

The format is: chr "dataIPMpackHypericumCov"

Details

data-frame with headings:

- id: unique plant id (this file contains only a subset of all individuals)

- bald: population (this subset contains only one population)

- year: transition from t to t+1 (this subset contains only data for 1994-1999)

- fireYear: year when the bald was last burned

- TSLF: time since last fire

- size: length of longest stem in individual (cm) in time t

- ontogeny: recruits vs established individuals in time t (1 = individual was recruited in time t, 0 =
already established individual prior to time t, NA = individual not yet recruited in time t)

- fec0: probability of reproduction (0= no flowering, 1 = individual was flowering in time t)

- fec1: number of fruits per plant (NA if fec0 = 0)

- fec2: number of seeds per fruit (NA if fec0 = 0)

- fec3: probability that seeds produced in year t will germinate that year

- fec4: probability of seedling survival prior to the next census

- goSB: probability that seeds produced in natural year t will go into the seedbank

- staySB: probability that seeds will remain in the seedbank from year t to t+1

- cov: annual precipitation in year t (Jan-Dec; mm)

- surv: survival (0 = dead, 1= alive, NAs if not yet recruited)

- sizeNext: length of longest stem in individual (cm) in time t+1

- ontogenyNext: recruits vs established individuals in time t+1 (1 = individual was recruited in time
t+1, 0 = already established individual prior to time t+1, NA = individual not yet recruited or dead
in t+1)

- covNext: annual precipitation in natural year t+1 (Jan-Dec; mm)

Author(s)

Pedro Quintana-Ascencio & Eric Menges

dataIPMpackSilwood 17

References

Quintana-Ascencio, Menges & Weekley. 2003. A fire-explicit population viability analyses of
Hypericum cumulicola in Florida Rosemary scrub. Conservation Biology 17, p433-449.

Examples

data(dataIPMpackHypericumCov)
print(head(dataIPMpackHypericumCov))

dataIPMpackSilwood Silwood Monocarp Dataset

Description

Demographic data of several monocarpic plants from Silwood (UK)

Usage

data(dataIPMpackSilwood)

Format

The format is: chr "dataIPMpackSilwood"

Details

data-frame with headings:

- exactDate: date measurement

- exactDateNext: date next measurement

- id: unique plant id

- Species: species name

- Site: location within Silwood park where plant was measured

- rtcr: root crown diameter, measured with caliper (cm)

- rtcrNext: root crown diameter at next census time (cm)

- ll: length of longest leaf (cm)

- llNext: length of longest leaf at next census (cm)

- rosetteDiam: rosette Diameter (cm()

- rosetteDiamNext: rosette diameter at next census (cm)

- flowered: probability of reproduction (0: individual did not flowered, 1: individual flowered)

- surv: survival (0: dead, 1: survival, NA: not known)

18 dataIPMpackSuccisa

References

Data used in: Metcalf, C.J.E., Rees, M., Alexander, J.M., Rose, K.E. 2006. Growth-survival trade-
offs and allometries in rosette-forming perennials. Funct. Ecol. 20, 217-225.

Examples

data(dataIPMpackSilwood)
print(head(dataIPMpackSilwood))
plot(dataIPMpackSilwood$rtcr,dataIPMpackSilwood$rtcrNext,
xlab="size now", ylab="size next", pch=19,log="xy")
maybe str(dataIPMpackSilwood) ; plot(dataIPMpackSilwood) ...

dataIPMpackSuccisa Succisa pratensis Dataset

Description

Subset of multiple years of demographic data of Succisa pratensis collected at the "Bennekomse
Meent" site in the Netherlands. Details are described in Jongejans and de Kroon (2005). More
information: E.Jongejans@science.ru.nl

Usage

data(dataIPMpackSuccisa)

Format

The format is: chr "dataIPMpackSuccisa"

Details

data-frame with headings:

- size: log of the product of the number of leaves and the maximum leaf length of rosette leaves at
time t

- sizeNext: log of the product of the number of leaves and the maximum leaf length of rosette leaves
at time t+1

- stage: stage of the individual (’continuous’ means the plant has a size; NA = not recruited yet) at
time t

- stageNext: stage of the individual (’continuous’ means the plant has a size; ’dead’ = dead) at time
t+1

- surv: survival (0 = dead, 1= alive, NAs if not yet recruited)

- offspringNext: type of new recruit (’sexual’ = seedling, ’clonal’ = side-rosette, NA = not a recruit)
at time t+1

- fec1Bolt: whether stems are produced (0 = no stems, 1 = at least 1 stem, NA = not recruited yet)
at time t

dataIPMpackSuccisa 19

- fec2Stem: number of stems when stems are produced (NA when fec1Bolt = NA or 0) at time t

- fec3Head: mean number of flower heads per stem when stems are produced (NA when fec1Bolt
= NA or 0) at time t

- fec1BoltNext: whether stems are produced (0 = no stems, 1 = at least 1 stem, NA = not recruited
yet) at time t+1

- fec2StemNext: number of stems when stems are produced (NA when fec1BoltNext = NA or 0) at
time t+1

- fec3HeadNext: mean number of flower heads per stem when stems are produced (NA when
fec1BoltNext = NA or 0) at time t+1

- cloning: whether clonal offspring (side-rosettes) are produced by this individual (NA for plants
that were not recruited yet at time t)

- clonesNext: number of clonal offspring (side-rosettes) produced when at least on side-rosette is
produced (NA when ’cloning’ = 0 or NA)

Author(s)

Eelke Jongejans & Hans de Kroon

References

Jongejans, E. and de Kroon, H. (2005) Space versus time variation in the population dynamics of
three co-occurring perennial herbs. Journal of Ecology, 93, 681-692.

Examples

data(dataIPMpackSuccisa)
print(head(dataIPMpackSuccisa))

Sp <- dataIPMpackSuccisa

fo<-makeFecObj(Sp, Formula = list(fec1Bolt ~ size+size2,
fec2Stem ~ size, fec3Head ~ size),

Family = c("binomial","poisson","poisson"),
Transform=c("none","-1","none"),
fecConstants = data.frame(seedsPerHead=50,
seedlingEstablishmentRate= 0.02))

co<-makeClonalObj(Sp, Formula = list(cloning ~ size,
clonesNext ~ size), Family = c("binomial","poisson"),

Transform=c("none","-1"), offspringSizeExplanatoryVariables = "size")

20 dataIPMpackSuccisa2

dataIPMpackSuccisa2 Succisa pratensis Dataset

Description

Subset of multiple years of demographic data of Succisa pratensis collected at the "Bennekomse
Meent" site in the Netherlands. Details are described in Jongejans and de Kroon (2005). More
information: E.Jongejans@science.ru.nl

Usage

data(dataIPMpackSuccisa2)

Format

The format is: chr "dataIPMpackSuccisa2"

Details

data-frame with headings:

- size: log of the sum of the products of the number of leaves and the maximum leaf length for
rosette and stem leaves at time t

- sizeNext: log of the sum of the products of the number of leaves and the maximum leaf length for
rosette and stem leaves at time t+1

- stage: stage of the individual (’continuous’ means the plant has a size; NA = not recruited yet) at
time t

- stageNext: stage of the individual (’continuous’ means the plant has a size; ’dead’ = dead) at time
t+1

- surv: survival (0 = dead, 1= alive, NAs if not yet recruited)

- offspringNext: type of new recruit (’sexual’ = seedling, ’clonal’ = side-rosette, NA = not a recruit)
at time t+1

- fec1Bolt: whether stems are produced (0 = no stems, 1 = at least 1 stem, NA = not recruited yet)
at time t

- fec2Stem: number of stems when stems are produced (NA when fec1Bolt = NA or 0) at time t

- fec3Head: mean number of flower heads per stem when stems are produced (NA when fec1Bolt
= NA or 0) at time t

- fec1BoltNext: whether stems are produced (0 = no stems, 1 = at least 1 stem, NA = not recruited
yet) at time t+1

- fec2StemNext: number of stems when stems are produced (NA when fec1BoltNext = NA or 0) at
time t+1

- fec3HeadNext: mean number of flower heads per stem when stems are produced (NA when
fec1BoltNext = NA or 0) at time t+1

diagnosticsPmatrix 21

- cloning: whether clonal offspring (side-rosettes) are produced by this individual (NA for plants
that were not recruited yet at time t)

- clonesNext: number of clonal offspring (side-rosettes) produced when at least on side-rosette is
produced (NA when ’cloning’ = 0 or NA)

Author(s)

Eelke Jongejans & Hans de Kroon

References

Jongejans, E. and de Kroon, H. (2005) Space versus time variation in the population dynamics of
three co-occurring perennial herbs. Journal of Ecology, 93, 681-692.

Examples

data(dataIPMpackSuccisa2)
print(head(dataIPMpackSuccisa2))

Sp <- dataIPMpackSuccisa2

fo<-makeFecObj(Sp, Formula = list(fec1Bolt ~ size+size2,
fec2Stem ~ size, fec3Head ~ size),

Family = c("binomial","poisson","poisson"),
Transform=c("none","-1","none"),
fecConstants = data.frame(seedsPerHead=50,
seedlingEstablishmentRate= 0.02))

co<-makeClonalObj(Sp, Formula = list(cloning ~ size, clonesNext ~ size),
Family = c("binomial","poisson"), Transform=c("none","-1"),

offspringSizeExplanatoryVariables = "size")

diagnosticsPmatrix Creates a series of diagnostic graphs for a P matrix.

Description

Displays the effects of increasing number of bins and continuous (size) stage range on a number
of predictions from the P matrix to verify that sufficient resolution and continuous stage range are
being used.

Usage

diagnosticsPmatrix(Pmatrix, growObj, survObj, dff=NULL, integrateType,
correction, cov = data.frame(covariate = 1), sizesToPlot = c(),
extendSizeRange = c())

22 diagnosticsPmatrix

Arguments

Pmatrix an IPMmatrix object.

growObj the growth object used to construct the IPMmatrix object.

survObj the survival object used to construct the IPMmatrix object.

dff the dataframe from which the survival and growth objects were constructed; if
not supplied, defaults to NULL, which will simply result in the size distribution
not being plotted.

integrateType integration type, defaults to midpoint (which uses probability density function);
other option is cumul (which uses the cumulative density function).

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for survival at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

cov a data-frame with one row containing all covariates; defaults to 1, and will be
ignored if covariates do not exist in growth and survival objects

sizesToPlot a vector containing desired sizes to plot growth resolution for (second panel); if
not supplied, the function will use the quantiles

extendSizeRange

a vector containing desired size range for the matrix to be compared with a larger
size range; if this vector has length 0 the defaults will be 0.5xminSize (unless
minSize<0 in which case, 2*minSize is used) and 1.5*maxSize

Details

This function provides a series of plots indicative of whether bin choice and size range is adequate.
On the first plot, the left panel shows the range of the data as a histogram (if a data-frame is provided)
and the range of the state variable fitted in the current Pmatrix; as well as the range of the state
variable in two Pmatrices used for comparison, one with the same number of bins but an extended
size range (red), and one with the same size range but an increased number of bins (blue) (increased
by about 50 percent). If the range in the data and the range in the Pmatrix are mis-matched, the
limits of the data used in building the Pmatrix can be adjusted with the minSize and maxSize
arguments in makeIPMPmatrix.

The discretization of a continuous function can result in under- or over-estimation of the true density.
Where this occurs, the sum of the columns of the discretized Pmatrix will not match predictions
from the fitted survival model. The middle panel plots these against each other for the three matrices
in the first panel (current, extended range and increased bin number) using the same colours as in
the first panel. Lines should fall along the (0,1) line shown in grey; if they do not, the argument
correction="constant" may be of use. This ensures that the columns sum to the fitted survival by
multiplying every column in the Integral Projection Model by the value that allows this. The third
panel checks whether extending the size range included in the matrix and increasing the number of
bins (by increasing nBigMatrix and thereby having narrower bins) does not alter basic predictions
from the IPM.

The six panels on the next plot show the discretized IPM (histograms) for the current IPM (top)
and one with an increased number of bins (bottom) and the theoretical density function (red line)

diagnosticsPmatrix 23

. These are plotted either for three chosen sizes (sizesToPlot) or the 0.25, 0.5 and 0.75 quantiles
of either the observed data or the range of meshpoints; this size is printed in the top right hand of
every plot. If the theoretical density function curve is very distant from the histograms, increasing
the nBigMatrix argument may correct this discrepancy.

Note that it is important that the comparison be "fair" - i.e., whatever the correction argument
used in your current IPM, the same argument must be used in diagnosticsPmatrix.

Note also that if survival is constant across size, the patterns apparent in the life expectancy plot
will reflect numerical slippage (since all sizes will have exactly the same life expectancy) and dis-
agreement between the different lines should be ignored.

Finally, note that if the correction used is discretizeExtremes then the column sums of the Pma-
trix and survival will not match towards the extremes.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner & Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

For effects of mesh size on IPM output: Zuidema, Jongejans, Chien, During & Schieving. Inte-
gral projection models for trees: a new parameterization method and a validation of model output.
Journal of Ecology 98, p345-355.

See Also

makeIPMPmatrix, convergeIPM

Examples

Example where mesh size does not have a major effect on model output:
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
diagnosticsPmatrix(Pmatrix, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), dff = dff)

Compare with the following example where mesh size has an important
effect on output:
Pmatrix <- makeIPMPmatrix(nBigMatrix = 8,

minSize = min(dff$size, na.rm = TRUE),
maxSize = 0.5*max(dff$size, na.rm = TRUE),

growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
diagnosticsPmatrix(Pmatrix, growObj = makeGrowthObj(dff),

24 discreteTrans-class

survObj = makeSurvObj(dff), dff = dff)

#with cumul
Pmatrix <- makeIPMPmatrix(nBigMatrix = 10,

minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff),
integrateType = "cumul")
diagnosticsPmatrix(Pmatrix, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), dff = dff, integrateType = "cumul")

#with log increment
Pmatrix <- makeIPMPmatrix(nBigMatrix = 50,

minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE),

growObj = makeGrowthObj(dff,Formula = logincr~size),
survObj = makeSurvObj(dff))
diagnosticsPmatrix(Pmatrix,

growObj = makeGrowthObj(dff,Formula = logincr~size),
survObj = makeSurvObj(dff), dff = dff)

#example with correction="discretizeExtremes"
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), correction="discretizeExtremes")
diagnosticsPmatrix(Pmatrix, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), dff = dff, correction="discretizeExtremes")

discreteTrans-class Class "discreteTrans"

Description

Matrix defining transitions between discrete stages; slots define the names of stages, etc.

Objects from the Class

Objects can be created by calls of the form new("discreteTrans", ...).

Slots

discreteTrans: Object of class "matrix" ~~

meanToCont: Object of class "matrix" ~~

sdToCont: Object of class "matrix" ~~

moveToDiscrete: Object of class "glm" ~~

discreteTransInteger-class 25

Methods

No methods defined with class "discreteTrans" in the signature.

Examples

showClass("discreteTrans")

discreteTransInteger-class

Class "discreteTransInteger"

Description

Matrix defining transitions between discrete stages; slots define the names of stages, etc.

Objects from the Class

Objects can be created by calls of the form new("discreteTransInteger", ...).

Slots

discreteTrans: Object of class "matrix" ~~

meanToCont: Object of class "matrix" ~~

thetaToCont: Object of class "matrix" ~~

moveToDiscrete: Object of class "glm" ~~

distToCont: Object of class "character" ~~

Methods

No methods defined with class "discreteTrans" in the signature.

Examples

showClass("discreteTransInteger")

26 elas

elas Estimates matrix element sensitivities and elasticities.

Description

Estimates sensitivities and elasticities of each element of a discretized IPM.

Usage

elas(A)
sens(A)

Arguments

A a matrix defining all transitions (growth, survival, fecundity) between sizes/stages.

Value

a matrix.

Note

Modified following code developed by Mark Rees & Dylan Childs

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001, Matrix Population Models: construction, analysis, interpretation. 2nd ed. Sinauer.
p206-256.

de Kroon, Plaisier, van Groenendael & Caswell. 1986. Elasticity: the relative contribution of
demographic parameters to population growth rate. Ecology 67, p1427-1431.

de Kroon, van Groenendael & Ehrlen. 2000. Elasticities: a review of methods and model limita-
tions. Ecology 81, p607-618.

See Also

sens, sensParams

envMatrix-class 27

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm=TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))

Fmatrix <- makeIPMFmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), fecObj = makeFecObj(dff))

IPM <- Pmatrix + Fmatrix

par(mfrow = c(1, 2))

senst <- sens(IPM)
image(Pmatrix@meshpoints, Pmatrix@meshpoints,t(senst),
main = "Sensitivity", xlab = "Continuous (e.g. size) stage in t",
ylab = "Continuous (e.g. size) stage in t+1")

elast <- elas(IPM)
image(Pmatrix@meshpoints, Pmatrix@meshpoints, t(elast), main = "Elasticity",
xlab = "Continuous (e.g. size) stage in t",
ylab = "Continuous (e.g. size) stage in t+1")

envMatrix-class Class "envMatrix"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("envMatrix", data, nrow, ncol, byrow, dimnames, ...).

Slots

.Data: Object of class "matrix" ~~

nEnvClass: Object of class "numeric" ~~

Extends

Class "matrix", from data part. Class "array", by class "matrix", distance 2. Class "structure",
by class "matrix", distance 3. Class "vector", by class "matrix", distance 4, with explicit coerce.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

28 fecObj-class

Examples

showClass("envMatrix")

fecObj-class Class "fecObj"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("fecObj", ...).

Slots

"fecConstants" "offspringSplitter" "meanOffspringSize" "sdOffspringSize" "fecByDiscrete"
"Transform"

Object of class "list" ~~

fitFec:fecConstants: Object of class "data.frame" ~~

fecNames: Object of class "character" ~~

offspringSplitter: Object of class "data.frame" ~~

offspringRel: Object of class "lm" ~~

vitalRatesPerOffspringType: Object of class "data.frame" ~~

sdOffspringSize: Object of class "numeric" ~~

fecByDiscrete: Object of class "data.frame" ~~

Transform: Object of class "character" ~~

Methods

No methods defined with class "fecObj" in the signature.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("fecObj")

fecObjInteger-class 29

fecObjInteger-class Class "fecObjInteger"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("fecObjInteger", ...).

Slots

"fecConstants" "offspringSplitter" "meanOffspringSize" "sdOffspringSize" "fecByDiscrete"
"Transform"

Object of class "list" ~~

fitFec:fecConstants: Object of class "data.frame" ~~

fecNames: Object of class "character" ~~

offspringSplitter: Object of class "data.frame" ~~

offspringRel: Object of class "glm" ~~

vitalRatesPerOffspringType: Object of class "data.frame" ~~

thetaOffspringSize: Object of class "numeric" ~~

fecByDiscrete: Object of class "data.frame" ~~

Transform: Object of class "character" ~~

distOffspring: Object of class "character" ~~

Methods

No methods defined with class "fecObj" in the signature.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("fecObjInteger")

30 generateData

generateData Generates random data in the form used by IPMpack.

Description

Simulates growth, survival and fecundity to create a dataframe of the form required by the functions
and methods used in IPMpack. Demographic stage data is only continuous.

Usage

generateData(nSamp=1000, type="simple")

Arguments

nSamp number of samples desired in the base population, defaults to 1000

type the kind of simulated data required. Supported values include "simple" (which
includes only a continuous stage and a discretely varying covariate); "discrete"
(which includes a discretely varying life stage); and "stochastic" (which includes
stochastically varying covariates)

Value

A dataframe with headings: - "size": continuous variable, indicating current size. - "sizeNext"
continuous variable, indicating size in the next time step. - "surv": boolean, indicating whether
individual survived or not to the next time step. - "covariate": discrete covariate (for type="simple").
- "covariateNext": discrete covariate in the next (for type="simple") time step. - "covariate1",
"covariate2", "covariate3", ...: discrete or continuous covariates (for type="stochastic".

- "fec": continuous variable, indicating fecundity. - "stage": character vector, containing names of
the discrete stages in that time-step, or "continuous" (for type="discrete"). - "stageNext": character
vector, containing names of the "discrete" stages in the following time-step, or "continuous" size
value (for type="discrete"). - "number": number of individuals moving between stages. "number" =
1 for all movements out of the "continuous" stage; "number" > 1 for all movements out of "discrete"
stages. This allows the user to not need to have an individual line for every movement between
discrete stages (for type="discrete").

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

simulateCarlina

growSurv 31

Examples

dff <- generateData(nSamp=2000, type="simple")
head(dff)

dff <- generateData(nSamp=2000, type="discrete")
head(dff)

dff <- generateData(nSamp=2000, type="stochastic")
head(dff)

growSurv Combines growth and survival.

Description

Predicts the probability density function of continuous (e.g. size) stage at time t+1 given stage
values at time t and survival probability as a function of stage values at time t, given a growth and
survival object.

Usage

growSurv(size, sizeNext, cov, growthObj, survObj)

Arguments

size vector of current size(s).

sizeNext vector of future size(s).

cov covariate level (numeric of length 1).

growthObj a growth object.

survObj a survival object.

Details

makeIPMPmatrix and variants there-of apply outer to this function to efficiently obtain the IPM P
matrix.

Value

numeric defining the pdf (probability density function).

Note

Code developed following Mark Rees, Dylan Childs & Karen Rose.

32 growth

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

See Also

growth, surv

Examples

dff <- generateData()
gr1 <- makeGrowthObj(dff)
sv1 <- makeSurvObj(dff)
sizeRange <- c(1:20)
sizeInit <- 1
growSurv(sizeInit, sizeRange, data.frame(covariate=1), gr1, sv1)
plot(growSurv(sizeInit, sizeRange, data.frame(covariate=1), gr1, sv1),

type="l", col = "dark gray",
xlab = "Continuous (e.g. size) stage at time t+1",
ylab = paste("Probability of survival to a specific size in t+1 from size ",
sizeInit, " at time t"))

growth Estimates growth probabilities.

Description

Generic function to predict the pdf (probability density function) of continuous (e.g. size) stage at
t+1 given stage at t and a growth object.

Usage

growth(size, sizeNext, cov, growthObj)

Arguments

size vector of current sizes.

sizeNext vector of sizes in the next time-step.

cov a data-frame with one row containing all covariates for this time-step.

growthObj a growth object.

growth-methods 33

Details

Models defining continuous (size) stage at t+1, or growth increment, or log growth increment are
defined; with various underlying statistical models allowing decreasing variance in size, etc.

Value

a vector of length sizeNext giving the pdf (probability density function) of each value of sizeNext.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

See Also

surv, growSurv

Examples

dff <- generateData()
gr1 <- makeGrowthObj(dff)
sizeRange <- c(1:20)
sizeInit <- 1
growth(sizeInit, sizeRange, data.frame(cov=1), gr1)
plot(growth(sizeInit, sizeRange, data.frame(cov=1), gr1), type="l",
col = "dark gray", xlab = "Continuous (e.g. size) stage at time t+1",
ylab = paste("Probability of growth to a specific size in t+1 from size ",
sizeInit, " at time t"))

growth-methods ~~ Methods for Function growth ~~

Description

~~ Methods for function growth ~~

Methods

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObj")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean sizeNext directly; the density function around this is normal.

34 growth-methods

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjDeclineVar")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean sizeNext directly; the density function around this is normal and the
sd may change with size.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjHossfeld")
Methods to predict the probability density of sizeNext using the Hossfeld function. The pre-
diction supplies mean incr which is added to size to obtain sizeNext; the density function
around this is normal.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjIncr")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean incr which is added to size to obtain sizeNext; the density function
around this is normal.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjIncrDeclineVar")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean incr which is added to size to obtain sizeNext; the density function
around this is normal and the sd may change with size.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncr")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean logincr which is exponentiated and added to size to obtain sizeNext;
the density function around this is log normal; and variance changes with size.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncrDeclineVar")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies logincr which is exponentiated and added to size to obtain sizeNext; the
density function around this is lognormal; the sd may change with size.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjTruncIncr")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean incr which is added to size to obtain sizeNext; the density function
around this is truncated normal, truncated at zero.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjPois")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean sizeNext directly; the density function around this is poisson. NOTE
THAT THIS EMPHATICALLY SHOULD NOT BE USED WITH AN IPM, SINCE THE
PREDICTION IS NOT CONTINUOUS. It can be used with makeIntegerPmatrix.

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjNegBin")
Methods to predict the probability density of sizeNext via linear prediction based around a
range of transforms of the current size, and covariates described in the data-frame "cov". The
prediction supplies mean sizeNext directly; the density function around this is negative bi-
nomial. NOTE THAT THIS EMPHATICALLY SHOULD NOT BE USED WITH AN IPM,
SINCE THE PREDICTION IS NOT CONTINUOUS. It can be used with makeIntegerPmatrix.

growthCum 35

growthCum Models growth allowing for cumulative bin estimation.

Description

Generic function to predict the cdf (cummulative density function) of continuous (e.g. size) stage
at t+1 given stage at t and a growth object.

Usage

growthCum(size, sizeNext, cov, growthObj)

Arguments

size vector of current sizes.

sizeNext vector of sizes in the next time step.

cov covariate level in this time step (numeric of length 1).

growthObj a growth object.

Value

a vector of length sizeNext giving the cdf (cummulative density function) of each value of sizeNext.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

growth

Examples

dff <- generateData()
gr1 <- makeGrowthObj(dff)
sizeRange <- c(1:20)
sizeInit <- 1
growthCum(sizeInit, sizeRange, data.frame(cov=1), gr1)
plot(growthCum(sizeInit, sizeRange, data.frame(cov=1), gr1), type="l",
col = "dark gray", xlab = "Continuous (e.g. size) stage at time t+1",
ylab = paste("Cummulative growth to a specific size in t+1 from size ",
sizeInit, " at time t"))

36 growthModelComp

growthCum-methods ~~ Methods for Function growthCum ~~

Description

~~ Methods for function growthCum ~~

Methods

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObj")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjDeclineVar")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjIncr")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncr")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjTruncIncr")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncrDeclineVar")

signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjHossfeld")

growthModelComp Compares growth and survival objects built from different covariate
sets.

Description

Function compares model fits for growth and survival objects built with different linear combina-
tions of covariates (plotting currently restricted to transforms of size; but comparison can include
any chosen covariates). Growth can have multiple response forms. Returns a list containing a
summary table of covariates and scores, and another list containing all of the growth (or survival)
objects used in the comparison.

Usage

growthModelComp(dataf,
expVars = c(sizeNext~1, sizeNext~size, sizeNext~size + size2),

regressionType = "constantVar", testType = "AIC",
makePlot = FALSE, mainTitle = "", plotLegend = TRUE,

legendPos = "topright",...)

growthModelComp 37

survModelComp(dataf, expVars = c(surv~1, surv~size, surv~size + size2),
testType = "AIC",

makePlot = FALSE, mainTitle = "",ncuts=20, plotLegend = TRUE,
legendPos = "bottomleft", ...)

Arguments

dataf dataframe with columns size, surv, and the growth response variable of choice

expVars list of Formulas. Defaults to c(sizeNext~1, sizeNext~size, sizeNext~size + size2).

regressionType character string identifying whether the type of regression run will have constant
or changing variance (for growthModelComp. Defaults to constantVar.

testType character string identifying the metric used to compare models. Can be any
string that uses loglike from the lm or glm object. For example "AIC" or
"BIC". Defaults to "AIC".

makePlot logical whether to make plots with the comparison building. Defaults to FALSE.

mainTitle string to place as the main attribute in plots (if makePlot = TRUE. defaults to
NULL.

ncuts for survModelComp, number of cuts in the data-set to be used in plotting

plotLegend logical whether to plot a legend. Defaults to FALSE.

legendPos places legend. Defaults to "topright".

... additional arguments for plotting (ylim, col, etc)

Details

Both growthModelComp and survModelComp use a dataframe that has variables size and sizeNext
to build a series of nested models. The default will build growth or survival objects with an intercept,
an intercept and size, an an intercept with size and size^2 terms.

The models build use only lm or glm (and not mcmcGLMM for example) to estimate maximum likeli-
hood estimates of functions. The testType (default "AIC" uses the loglike output from the lm or
glm objects to score the model.

Plotting calls the functions plotGrowthModelComp or plotSurvModelComp to plot the objects.
These functions can also be called after building the model comparison lists that are returned.
If called outside of the initial building functions, they need to receive the GrowthObjects or
SurvObjects list in the outputList from the build function. See plotGrowthModelComp and plotSurvModelComp
for more details.

Value

a list with a summary table of class dataframe with models and scores and list of containing the
objects of class grObj and survObj for each model.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

38 growthObj-class

See Also

makeGrowthObj,makeSurvObj,plotGrowthModelComp, plotSurvModelComp

Examples

Data with size and sizeNext
dff <- generateData()

growthModelComp(dff, makePlot = TRUE)
survModelComp(dff, makePlot = TRUE)

growthModelComp(dff, makePlot = TRUE, regressionType = "changingVar")

growthObj-class Class "growthObj"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObj", ...).

Slots

fit: Object of class "lm" ~~

sd: Object of class "numeric" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "numeric", growthObj = "growthObj"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", cov = "numeric", growthObj = "growthObj"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObj")

growthObjDeclineVar-class 39

growthObjDeclineVar-class

Class "growthObjDeclineVar"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjDeclineVar", ...).

Slots

fit: Object of class "list" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjDeclineVar"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjDeclineVar"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjDeclineVar")

growthObjHossfeld-class

Class "growthObjHossfeld"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjHossfeld", ...).

40 growthObjIncr-class

Slots

logLik: Object of class "numeric" ~~

paras: Object of class "numeric" ~~

sd: Object of class "numeric" ~~

hessian: Object of class "matrix" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "numeric", growthObj = "growthObjHossfeld"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", h = "numeric", cov = "numeric", growthObj = "growthObjHossfeld"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjHossfeld")

growthObjIncr-class Class "growthObjIncr"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjIncr", ...).

Slots

fit: Object of class "lm" ~~

sd: Object of class "numeric" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjIncr"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", h = "numeric", cov = "data.frame", growthObj = "growthObjIncr"):
...

growthObjIncrDeclineVar-class 41

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjIncr")

growthObjIncrDeclineVar-class

Class "growthObjIncrDeclineVar"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjIncrDeclineVar", ...).

Slots

fit: Object of class "list" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjIncrDeclineVar"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", h = "numeric", cov = "data.frame", growthObj = "growthObjIncrDeclineVar"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjIncrDeclineVar")

42 growthObjLogIncrDeclineVar-class

growthObjLogIncr-class

Class "growthObjLogIncr"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjLogIncr", ...).

Slots

fit: Object of class "lm" ~~

sd: Object of class "numeric" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncr"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncr"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjLogIncr")

growthObjLogIncrDeclineVar-class

Class "growthObjLogIncrDeclineVar"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjLogIncrDeclineVar", ...).

growthObjNegBin-class 43

Slots

fit: Object of class "list" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjLogIncrDeclineVar"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", h = "numeric", cov = "data.frame", growthObj = "growthObjLogIncrDeclineVar"):
...

Examples

showClass("growthObjLogIncrDeclineVar")

growthObjNegBin-class Class "growthObjNegBin"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjNegBin", ...).

Slots

fit: Object of class "list" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjNegBin"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjNegBin")

44 growthObjTruncIncr-class

growthObjPois-class Class "growthObjPois"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjPois", ...).

Slots

fit: Object of class "list" ~~

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjPois"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjPois")

growthObjTruncIncr-class

Class "growthObjTruncIncr"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("growthObjTruncIncr", ...).

Slots

fit: Object of class "list" ~~

varcov: Object of class "matrix" ~~

Hossfeld 45

Methods

growth signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjTruncIncr"):
...

growthCum signature(size = "numeric", sizeNext = "numeric", cov = "data.frame", growthObj = "growthObjTruncIncr"):
...

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

showClass("growthObjTruncIncr")

Hossfeld Creates a Hossfeld function defining growth.

Description

Functional form describing growth according to a Hossfeld function.

Usage

Hossfeld(size, par)

Arguments

size vector of sizes.

par vector of length 3.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Zuidema, Jongejans, Chien, During & Schieving. 2010. Integral projection models for trees: a new
parameterization method and a validation of model output. Journal of Ecology 98, p345-355.

Rivas, Gonzalez, Gonzalez & von Gadow. 2004. Compatible height and site index models for five
pine species in El Salto, Durango (Mexico). Forest Ecology and Management 201, p145-160.

46 IPMmatrix-class

Examples

dff <- generateData()
sizeRange <- c(1:20)
sizeInit <- 1
Hossfeld(sizeRange, rep(1, 3))
plot(Hossfeld(1:10, rep(1, 3)), type = "l",

ylab = "Predicted increment from t to t+1",
xlab = "Continuous (size) stage in time t", col = "dark gray")

invLogit Implements a logistic transform.

Description

Provided a vector or numeric changes it into a vector on 0-1 using the invLogit transform.

Usage

invLogit(x)

Arguments

x vector of numbers for which the transform is required.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

x <- rnorm(100)
plot(sort(x), invLogit(sort(x)), type = "l", xlab = "State x", ylab =
"Transformed state x", col = "dark gray")

IPMmatrix-class Class "IPMmatrix"

Description

Class IPMmatrix contains a matrix describing transitions between sizes or discrete stages; other
slots described integration resolution, etc.

Objects from the Class

Objects can be created by calls of the form new("IPMmatrix", ...).

IPMpackNews 47

Slots

.Data: Object of class "matrix" ~~

nDiscrete: Object of class "numeric" ~~

nEnvClass: Object of class "numeric" ~~

nBigMatrix: Object of class "numeric" ~~

meshpoints: Object of class "numeric" ~~

env.index: Object of class "numeric" ~~

names.discrete: Object of class "character" ~~

Extends

Class "matrix", from data part. Class "array", by class "matrix", distance 2. Class "structure",
by class "matrix", distance 3. Class "vector", by class "matrix", distance 4, with explicit coerce.

Methods

No methods defined with class "IPMmatrix" in the signature.

Examples

showClass("IPMmatrix")

IPMpackNews Show a text file containing package news and updates.

Description

Learn about recent changes to IPMpack.

Usage

IPMpackNews()

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

Examples

IPMpackNews()

48 largeMatrixCalc

largeMatrixCalc Calculates population growth rate (lambda) and stable stage distribu-
tion in a computationally efficient way when the number of bins in the
IPM is large.

Description

Method to calculate population growth rate (lambda) and stable stage distribution where a large
number of bins are used in the IPM, as it may be the case with species that vary largely in size, or
models that include size x age interactions.

Usage

largeMatrixCalc(Pmatrix, Fmatrix, tol = 1e-08)

Arguments

Pmatrix object of class IPMmatrix describing survival transitions.

Fmatrix object of class IPMmatrix describing fecundity transitions.

tol tolerance for convergence, defaults to 1e-08.

Value

lambda Population rate of increase.

stableDist Stable stage distribution.

h1 size bin width.

Note

Modified from Appendix A in Rees and Ellner 2009 (see references).

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Rees and Ellner. 2009. Integral projection models for populations in temporally varying environ-
ments. The American Naturalist 79, p575-594.

Caswell. 2001. Matrix population models: construction, analysis, and interpretation. 2nd ed.
Sinauer. p377-502.

Garcia, Dahlgren, Ehrlen. 2011. No evidence of senescence in a 300-year-old mountain herb.
Journal of Ecology 99, p1424-1430.

makeClonalObj 49

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),

survObj = makeSurvObj(dff))
Fmatrix <- makeIPMFmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE),fecObj = makeFecObj(dff))

largeMatrixCalc(Pmatrix, Fmatrix)

par(mfrow=c(1,2),pty="s")

plot(largeMatrixCalc(Pmatrix, Fmatrix)$stableDist,
ylab = "Stable stage distribution",

xlab = "Continuous (e.g. size) stage",
type = "l", col = "blue", lty = 1, ylim = c(0:1))

#Note that this will not always run - as tolerance levels
for convergence are set to be quite high
#plot(largeMatrixCalc(Pmatrix, Fmatrix)$reprodValue,
ylab = "Reproductive value",
xlab = "Continuous (e.g. size) stage", type = "l", col = "red",
lty = 1, ylim = c(0:1))

makeClonalObj Function to build clonal reproduction objects

Description

Allows a series of different glms to be fit for all steps of clonal reproduction, e.g., probability of
reproducing clonally, number of clonal offspring produced, etc. Currently only pre-census clonal
reproduction relationships can be handled.

Usage

makeClonalObj(dataf, fecConstants=data.frame(NA),
Formula=list(fec~size),Family="gaussian",
Transform="none",meanOffspringSize=NA,
sdOffspringSize=NA,offspringSplitter=data.frame(continuous=1),
vitalRatesPerOffspringType=data.frame(NA),fecByDiscrete=data.frame(NA),
offspringSizeExplanatoryVariables="1", coeff=NULL,doOffspring=TRUE)

Arguments

dataf a dataframe with columns "size", "sizeNext", "stage", "stageNext", and any
number of columns with clonal reproduction data. If clonal reproduction data
is transformed via log, etc, this MUST BE MADE CLEAR in the argument

50 makeClonalObj

Transform since the clonality object produced must generate total reproductive
output.)

fecConstants a data-frame containing the value by which each of the product of the fecundity
rates will be multiplied in the order defined by the order supplied in the list
Formula; these might capture for example the probability of establishment of
clones or other steps in the clonal reproductive pathway that are not measured
for each parent; default is NA if no constants are used.

Formula a list containing formulas describing the desired explanatory variables (inter-
actions, etc) and response variables in classical R style, i.e. covariates sepa-
rated by ‘+’, ‘*’, ‘:’. Possible covariates include ‘size’, ’size2’ (size^2), ‘size3’
(size^3),‘logsize’ (log(size)), and ‘covariate’ (if this name is used, the assump-
tion is made that this is a discrete covariate from which compound matrices may
be constructed), or any other covariates available in the data-frame supplied.

Family a character vector containing the names of the families to be used for the glms,
e.g., binomial, poisson, etc. Again, these must appear in the order defined by
Formula

Transform a character vector containing the names of the transforms to be used for the
response variables, e.g., log, sqrt, -1, etc. Again, these must appear in the order
defined by Formula

meanOffspringSize

numeric vector, defining mean offspring size. Defaults to NA, in which case the
function will use to data to assess the mean offspring size according to the rela-
tionship defined in offspringSizeExplanatoryVariables (which either simply fits
a mean, or may fit more complex relationships linking maternal size to offspring
size).

sdOffspringSize

numeric vector, defining standard deviation of offspring size. Defaults to NA,
in which case the function will use the data to assess the sd in offspring size; as
described for meanOffspringSize

offspringSplitter

dataframe with values defining the number of offspring going into the indicated
offspring category; will be re-scaled to sum to 1 within the function. This argu-
ment needs to be entered as a data.frame, and the names in the data.frame need
to precisely match the used stage names in the data file.

vitalRatesPerOffspringType

dataframe defining which fecundity rates (both functions and constants) apply to
which offspring category. This only needs to be specified when some fecundity
rates do not apply to all offspring categories. The offspring categories in the col-
umn names of this dataframe should match those in the offspringSplitter exactly.
The row names of the dataframe should match the fecundity column names in
the data file and the supplied fecundity constants, in that order. In the dataframe,
a ’1’ indicates that a fecundity rate applies to an offspring category, while a ’0’
indicates an omission. For instance, establishment and seedling survival rates
may be applicable to seedlings, but not to seeds that go into a seedbank (de-
pending on the life cycle and definition of vital rates).

makeClonalObj 51

fecByDiscrete data.frame defining number of offspring produced by each discrete class ; de-
faults to 0. If specified, ALL discrete classes MUST appear in alphabetical or-
der, so NO "continuous". e.g. fecByDiscrete=data.frame(dormant=0,seedAge1=4.2,seedOld=0)

offspringSizeExplanatoryVariables

a character defining the relationship defining offspring size; the default is "1", in-
dicating simply fitting a mean and a variance; alternatives would including defin-
ing offspring size as a function of maternal size (i.e., offspringSizeExplanatory-
Variables="size") or more complex polynomials of size (i.e., offspringSizeEx-
planatoryVariables="size+size2"). The corresponding relationship is fitted to the
data contained in dataf, taking as the response variable the column "sizeNext"
in dataf for rows where the column "offspringNext" is equal to "clonal" and the
column "stageNext" is equal to "continuous".

coeff list of numeric vector of required coefficients to be imposed if dataf is NULL
for each element of the Formula list in order; must be compatible with Formula

doOffspring argument defining whether you wish to fit an offspring regression as part of this
function, or do it separately (see makeOffspringObj)

Details

This function fits a suite of subfunctions of clonal reproduction towards creating a Clonal transition
projection model. Users can define the functional form of each relationship, as well as the distri-
bution and any transforms. There is also a possibility of defining clonal reproduction from discrete
sizes into each of the subfunction outcomes; defined in the matrix fecByDiscrete.

Value

an object of class fecObj

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeSurvObj, makeGrowthObj

Examples

makeClonalObj works exactly the same way as makeFecObj.
An example will be added here as soon as we have added a
data file on a clonal plant to the package.

52 makeCompoundCmatrix

makeCompoundCmatrix Builds a compound C matrix.

Description

Uses clonality object, and environmental transition objects to construct a matrix defining proba-
bilities for transitions between sizes due to clonal reporudction given both a continuous state (e.g.
size) and environmental state, as well as a discrete stage if necessary. Currently only pre-census
clonal reproduction can be handled. NOTE - old createCompoundCmatrix is being deprecated; use
makeCompoundCmatrix instead.

Usage

makeCompoundCmatrix(nEnvClass = 2, nBigMatrix = 50,
minSize = -1, maxSize = 50, envMatrix, clonalObj,
integrateType ="midpoint", correction = "none",
preCensus = TRUE, survObj = NULL, growObj = NULL,
offspringObj = NULL)

Arguments

nEnvClass numeric, number of environmental classes, defaults to 2.

nBigMatrix numeric, number of size bins in the P matrix, defaults to 50.

minSize numeric, minimum size of the P matrix, defaults to -1.

maxSize numeric, maximum size of the P matrix, defaults to 50.

envMatrix envMatrix object defining transitions between environmental states for each
size.

clonalObj clonality object.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function).

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for total fertility at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

preCensus logical (TRUE or FALSE), indicating whether the fecundity object should rep-
resent an interval between pre-breeding or a post-breeding censusses. defaults
to TRUE (pre-breeding census), meaning that all reproduction and offspring
rates required for the F matrix are embedded in fecObj. Alternatively, an F
matrix based on post-breeding census (preCensus=FALSE) requires additional
survObj and growObj, to cover the survival and growth of the parents until the
reproduction event.

survObj suvival object, describing the survival of parents from a census until the repro-
duction event starts (at some point during the inter-census time step.

makeCompoundFmatrix 53

growObj growth object, describing the growth of parents that survive until the reproduc-
tion event starts. Warning: this growth object is still ignored in makeIPMF-
matrix in the current version of IPMpack. It will become functional in coming
versions.

offspringObj growth object, describing the size of offspring (this process may alternatively
appear in fecObj).

Value

an object of class IPMmatrix with dimensions nBigMatrix*nEnvClass, or if discrete transitions exist
(nBigMatrix+nDisc)*nEnvClass

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

For information on C matrix: Caswell. 2001. Matrix population models: construction, analysis,
and interpretation. 2nd ed. Sinauer. p110-112.

For midpoint: Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for
trees: a new parameterization method and a validation of model output. Journal of Ecology 98,
p345-355.

For multiple-vital rate integration on fecundity: Yang, Jongejans, Yang & Bishop. 2011. The effect
of consumers and mutualists of Vaccinum membranaceum at Mount St. Helens: dependence on
successional context. PLoS One 10, p1-11.

See Also

makeCompoundPmatrix,makeIPMCmatrix

Examples

See makeCompoundFmatrix for examples

makeCompoundFmatrix Builds a compound F matrix.

Description

Uses fecundity object, and environmental transition objects to construct a matrix defining proba-
bilities for transitions between sizes due to fecundity given both a continuous state (e.g. size) and
environmental state, as well as a discrete stage if necessary (e.g. seedbank). NOTE - old create-
CompoundFmatrix is being deprecated; use makeCompoundFmatrix instead.

54 makeCompoundFmatrix

Usage

makeCompoundFmatrix(nEnvClass = 2, nBigMatrix = 50,
minSize = -1, maxSize = 50, envMatrix, fecObj, integrateType="midpoint",
correction="none",
preCensus = TRUE, survObj = NULL, growObj = NULL, offspringObj=NULL)

Arguments

nEnvClass numeric, number of environmental classes, defaults to 2.
nBigMatrix numeric, number of size bins in the P matrix, defaults to 50.
minSize numeric, minimum size of the P matrix, defaults to -1.
maxSize numeric, maximum size of the P matrix, defaults to 50.
envMatrix envMatrix object defining transitions between environmental states for each

size.
fecObj fecundity object.
integrateType integration type, defaults to "midpoint" (which uses probability density func-

tion); other option is "cumul" (which uses the cumulative density function).
correction correction type, defaults to none. The first option is constant which will mul-

tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for total fertility at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

preCensus logical (TRUE or FALSE), indicating whether the fecundity object should rep-
resent an interval between pre-breeding or a post-breeding censusses. defaults
to TRUE (pre-breeding census), meaning that all reproduction and offspring
rates required for the F matrix are embedded in fecObj. Alternatively, an F
matrix based on post-breeding census (preCensus=FALSE) requires additional
survObj and growObj, to cover the survival and growth of the parents until the
reproduction event.

survObj suvival object, describing the survival of parents from a census until the repro-
duction event starts (at some point during the inter-census time step.

growObj growth object, describing the growth of parents that survive until the reproduc-
tion event starts. Warning: this growth object is still ignored in makeIPMF-
matrix in the current version of IPMpack. It will become functional in coming
versions.

offspringObj growth object, describing the size of offspring (this process may alternatively
appear in fecObj).

Value

an object of class IPMmatrix with dimensions nBigMatrix*nEnvClass, or if discrete transitions exist
(nBigMatrix+nDisc)*nEnvClass

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

makeCompoundFmatrix 55

References

For information on F matrix: Caswell. 2001. Matrix population models: construction, analysis, and
interpretation. 2nd ed. Sinauer. p110-112.

For midpoint: Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for
trees: a new parameterization method and a validation of model output. Journal of Ecology 98,
p345-355.

For multiple-vital rate integration on fecundity: Yang, Jongejans, Yang & Bishop. 2011. The effect
of consumers and mutualists of Vaccinum membranaceum at Mount St. Helens: dependence on
successional context. PLoS One 10, p1-11.

See Also

makeCompoundPmatrix,makeIPMFmatrix

Examples

Data with only continuous stage and two habitats
dff <- generateData()
dff$fec[dff$fec==0] <- NA
Fmatrix <-makeCompoundFmatrix(nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm=TRUE),
envMatrix = makeEnvObj(dff),
fecObj = makeFecObj(dff, Formula = fec~size+size2+covariate,
Transform = "log"))

image(1:nrow(Fmatrix), 1:ncol(Fmatrix), t(log(Fmatrix)),
xlab="Continuous state (e.g. size) at t",
ylab="Continuous state (e.g. size) at t+1", axes = FALSE)
axis(1, at = 1:nrow(Fmatrix), lab = round(rep(Fmatrix@meshpoints,

Fmatrix@nEnvClass), 2))
axis(2,at = 1:nrow(Fmatrix), lab = round(rep(Fmatrix@meshpoints,

Fmatrix@nEnvClass), 2))
abline(h = length(Fmatrix@meshpoints)*(1:Fmatrix@nEnvClass))
abline(v = length(Fmatrix@meshpoints)*(1:Fmatrix@nEnvClass))

Data with continuous and discrete stages
dff <- generateData(type="discrete")
dff$fec[dff$fec==0] <- NA
dff$covariate <- sample(1:3, size = nrow(dff), replace = TRUE)
dff$covariateNext <- sample(1:3, size = nrow(dff), replace = TRUE)
fv1 <- makeFecObj(dff, Formula = fec~size, Transform = "log",
offspringSplitter=data.frame(continuous = 0.9, dormant = 0.1))
Fmatrix <- makeCompoundFmatrix(minSize = min(dff$size, na.rm=TRUE),
maxSize = max(dff$size, na.rm = TRUE), envMatrix = makeEnvObj(dff),

fecObj = fv1)

56 makeCompoundPmatrix

makeCompoundPmatrix Builds a compound P matrix.

Description

Uses growth, survival, discreteTrans, and environmental transition objects to construct a matrix
defining probabilities for transitions between continuous stages (e.g. size) due to growth and sur-
vival given both size and environmental state and discrete stages. NOTE - old createCompoundP-
matrix is being deprecated; use makeCompoundPmatrix instead.

Usage

makeCompoundPmatrix(nEnvClass = 2, nBigMatrix = 50,
minSize = -1, maxSize = 50, envMatrix, growObj, survObj,
discreteTrans = 1, integrateType = "midpoint",correction = "none")

Arguments

nEnvClass numeric, number of environmental classes, defaults to 2.

nBigMatrix numeric, number of size bins in the P matrix, defaults to 50.

minSize numeric, minimum size of the P matrix, defaults to -1.

maxSize numeric, maximum size of the P matrix, defaults to 50.

envMatrix envMatrix object defining transitions between environmental states for each
size.

growObj growth object.

survObj survival object.

discreteTrans object of class discreteTrans, or numeric.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function).

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for survival at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

Details

This structure can also be used to define size x age IPMs, where the transition between ages is
reflected by a similar matrix.

Value

an object of class IPMmatrix with dimensions nBigMatrix * nEnvClass, or if discrete transitions
exist (nBigMatrix + nDisc) * nEnvClass

makeCompoundPmatrix 57

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

For information on P matrix: Caswell. 2001. Matrix population models: construction, analysis, and
interpretation. 2nd ed. Sinauer. p110-112.

For habitat x stage modeling: Tuljapurkar, Horvitz & Pascarella. 2003. The many growth rates and
elasticities of populations in random environments. American Naturalist 162: p489-502.

Pascarella & Horvitz. 1998. Hurricane disturbance and the population dynamics of a tropical
understory shrub: megamatrix elasticity analysis. Ecology 79: p547-563.

Horvitz & Schemske. 1986. Seed dispersal and environmental heterogeneity in a neotropical herb:
A model of population and patch dynamics. In Symposium on frugivores and seed dispersal .
(Estrada & Fleming, eds.) Dr. W. Junk Publishers, Dordrecht, Netherlands. pp. 169-186.

For age x size modeling: Garcia, Dahlgren and Ehrlen. 2011. No evidence of senescence in a
300-year-old mountain herb. Journal of Ecology 99, p1424-1430.

For general information:

Easterling, Ellner and Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner and Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

See Also

makeCompoundFmatrix,makeIPMPmatrix

Examples

Data with only continuous stage and two habitats
dff <- generateData()
Pmatrix <- makeCompoundPmatrix(minSize = min(dff$size,na.rm = TRUE),
maxSize = max(dff$size,na.rm = TRUE), envMatrix = makeEnvObj(dff),
growObj = makeGrowthObj(dff, Formula = sizeNext~size+size2+covariate),
survObj = makeSurvObj(dff, Formula = surv~size+size2+covariate))

image(1:nrow(Pmatrix), 1:ncol(Pmatrix), t(log(Pmatrix)),
xlab = "Continuous stage (e.g. size) at t",
ylab = "Continuous stage (e.g. size) at t+1", axes = FALSE)
axis(1, at = 1:nrow(Pmatrix), lab = round(rep(Pmatrix@meshpoints,

Pmatrix@nEnvClass), 2))
axis(2, at = 1:nrow(Pmatrix), lab = round(rep(Pmatrix@meshpoints,

Pmatrix@nEnvClass), 2))
abline(h = length(Pmatrix@meshpoints) * (1:Pmatrix@nEnvClass))
abline(v = length(Pmatrix@meshpoints) * (1:Pmatrix@nEnvClass))

Data with continuous and discrete stages
dff <- generateData(type="discrete")

58 makeDiscreteTrans

dff$covariate <- sample(1:3, size = nrow(dff), replace = TRUE)
dff$covariateNext <- sample(1:3, size = nrow(dff), replace = TRUE)
discM <- makeDiscreteTrans(dff)
Pmatrix <- makeCompoundPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), envMatrix = makeEnvObj(dff),
growObj = makeGrowthObj(dff, Formula = sizeNext~size+size2+covariate),
survObj = makeSurvObj(dff, Formula = surv~size+size2+covariate),
discreteTrans = discM)

makeDiscreteTrans Builds matrix for transitions between discrete (e.g. seedbank, dor-
mant) and continuous (e.g. size) stages.

Description

Function that takes a data frame reflecting a population that includes continuous (e.g., size) and
discrete (e.g., diapause) classes of individuals, and builds a transition matrix from this for movement
between discrete and continuous stages (providing just a single value for the continuous stages; the
detail of movement between continuous stages (e.g., sizes) is generated elsewhere). This object can
then be used as an argument in the function to "makeIPMPmatrix" to build a P matrix that contains
both discrete and continuous stages.

The dataframe must contain columns "stage" and "stageNext" with values of the names of the dis-
crete classes and the name "continuous" where appropriate, in the current and subsequent time step.
Continuous categories are also defined by their measurements, contained in "size" and "sizeNext".
This is necessary for defining the mean and variance of the continuous stage of individuals emerg-
ing from discrete stages. Alternatively, you can enter the transition matrix for the discrete stages in
the ’discreteTrans’ argument.

Usage

makeDiscreteTrans(dataf, stages = NA, discreteTrans = NA,
meanToCont = NA, sdToCont = NA,

continuousToDiscreteExplanatoryVariables = "size")

Arguments

dataf a dataframe with columns "stage", "stageNext" (both FACTORS (use as.factor)
containing either names of discrete stages or "continuous" or "dead"), "size",
"sizeNext", and "surv" (continuous and boolean variables respectively).

stages a character vector with the names of the discrete classes. Normally this argument
does not have to be used as the names of discrete classes are extracted from the
data or entered discreteTrans matrix.

discreteTrans a matrix with transition probabilities between the discrete and continuous stages.
The column names should match the stage/stageNext names in the data file. The
names discrete stages should be in alphabetical order, followed by ’continuous’.
The row names should be the same, but with ’dead’ added at the bottom. Thus,
this matrix represents all the fates of individuals from the various classes.

makeDiscreteTrans 59

meanToCont a matrix containing the mean sizeNext values for individuals moving from dis-
crete classes to the continuous classes (should contain NA when no individuals
move from a particular discrete class to a continuous sizeNext). The column
names should be equal (in alphabetical order) to the names of the discrete classes
(so no continuous).

sdToCont a matrix containing the sd sizeNext values for individuals moving from discrete
classes to the continuous classes (should contain NA when no individuals move
from a particular discrete class to a continuous sizeNext). The column names
should be equal (in alphabetical order) to the names of the discrete classes (so
no continuous).

continuousToDiscreteExplanatoryVariables

a character defining the relationship defining size influences the probability of
individuals in the continuous class moving to any of the discrete classes. This
argument is not relevant when individuals in the continuous stage cannot move
into any discrete stage.

Value

an object of class "discreteTrans" with columns corresponding to all the discrete and the one con-
tinuous stage.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner & Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

See Also

makeIPMPmatrix

Examples

dff <- generateData(type="discrete")
discTrans <- makeDiscreteTrans(dff)
makeIPMPmatrix(nBigMatrix = 10, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), discreteTrans = discTrans)

Often some data needed for makeDiscreteTrans are not available as
individual records in your data file. For instance the fate of seeds
in the seedbank of the generateData(type="discrete") example:
dff<-generateData()
Now the transition matrix needs to be entered as an argument,
as well as the mean and sd of sizeNext values for discrete to

60 makeDiscreteTransInteger

continuous transitions.
discTrans <- makeDiscreteTrans(dff,
discreteTrans = matrix(c(.5,.1,.4,0,1,0),
nrow=3, ncol=2,
dimnames = list(c("seedbank","continuous","dead"),
c("seedbank","continuous"))),
meanToCont = matrix(c(mean(dff$sizeNext[is.na(dff$stage)

&dff$stageNext=="continuous"],na.rm=TRUE)),
nrow=1, ncol=1, dimnames = list(1,c("seedbank"))),
sdToCont = matrix(c(sd(dff$sizeNext[is.na(dff$stage)

&dff$stageNext=="continuous"],na.rm=TRUE)),
nrow=1, ncol=1, dimnames = list(1,c("seedbank"))))
Pmatrix<-makeIPMPmatrix(nBigMatrix = 10, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), discreteTrans = discTrans)
Fmatrix<-makeIPMFmatrix(nBigMatrix = 10, fecObj = makeFecObj(dff))
dim(Pmatrix)
dim(Fmatrix)
To fix this mismatch, all discrete classes (1 in this case) need to
be added to the Fmatrix as well, e.g.:
Fmatrix<-makeIPMFmatrix(nBigMatrix = 10, fecObj = makeFecObj(dff,

offspringSplitter=data.frame(seedbank=.3,continuous=.7)))
IPM <- Pmatrix + Fmatrix

makeDiscreteTransInteger

Builds matrix for transitions between discrete (e.g. seedbank, dor-
mant) and continuous (e.g. size) stages, for situation where continuous
variable is an integer (e.g. number of leaves).

Description

Function that takes a data frame reflecting a population that includes continuous (e.g., size) and
discrete (e.g., diapause) classes of individuals, and builds a transition matrix from this for movement
between discrete and continuous stages (providing just a single value for the continuous stages; the
detail of movement between continuous stages (e.g., sizes) is generated elsewhere). This object can
then be used as an argument in the function to "makeIPMPmatrix" to build a P matrix that contains
both discrete and continuous stages.

The dataframe must contain columns "stage" and "stageNext" with values of the names of the dis-
crete classes and the name "continuous" where appropriate, in the current and subsequent time step.
Continuous categories are also defined by their measurements, contained in "size" and "sizeNext".
This is necessary for defining the mean and variance of the continuous stage of individuals emerg-
ing from discrete stages. Alternatively, you can enter the transition matrix for the discrete stages in
the ’discreteTrans’ argument.

Usage

makeDiscreteTransInteger(dataf,
stages = NA,

makeDiscreteTransInteger 61

discreteTrans = NA,
meanToCont = NA,
thetaToCont = NA,
continuousToDiscreteExplanatoryVariables = "size",
distToCont = "poisson")

Arguments

dataf a dataframe with columns "stage", "stageNext" (both FACTORS (use as.factor)
containing either names of discrete stages or "continuous" or "dead"), "size",
"sizeNext", and "surv" (continuous and boolean variables respectively).

stages a character vector with the names of the discrete classes. Normally this argument
does not have to be used as the names of discrete classes are extracted from the
data or entered discreteTrans matrix.

discreteTrans a matrix with transition probabilities between the discrete and continuous stages.
The column names should match the stage/stageNext names in the data file. The
names discrete stages should be in alphabetical order, followed by ’continuous’.
The row names should be the same, but with ’dead’ added at the bottom. Thus,
this matrix represents all the fates of individuals from the various classes.

meanToCont a matrix containing the mean sizeNext values for individuals moving from dis-
crete classes to the continuous classes (should contain NA when no individuals
move from a particular discrete class to a continuous sizeNext). The column
names should be equal (in alphabetical order) to the names of the discrete classes
(so no continuous).

thetaToCont a matrix containing the size parameter of sizeNext values for individuals mov-
ing from discrete classes to the continuous classes (should contain NA when
no individuals move from a particular discrete class to a continuous sizeNext).
The column names should be equal (in alphabetical order) to the names of the
discrete classes (so no continuous).

continuousToDiscreteExplanatoryVariables

a character defining the relationship defining size influences the probability of
individuals in the continuous class moving to any of the discrete classes. This
argument is not relevant when individuals in the continuous stage cannot move
into any discrete stage.

distToCont character indicating the desired distribution of emergent sizes (poisson or nega-
tive binomial)

Details

See help for makeDiscreteTrans; this is exactly analagous, except that it uses the poisson or negative
binomial as descriptors for sizes on emergence from discrete stages

Value

an object of class "discreteTransInteger" with columns corresponding to all the discrete and the one
continuous stage.

62 makeEnvObj

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner & Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

See Also

makeIPMPmatrix, makeDiscreteTrans

Examples

dff <- generateData(type="discrete")
dff$fec[dff$fec==0] <- NA
dff$size <- pmax(floor(dff$size+10),0)
dff$sizeNext <- pmax(floor(dff$sizeNext+10),0)
discTrans <- makeDiscreteTransInteger(dff)
makeIPMPmatrix(nBigMatrix = 10, growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), discreteTrans = discTrans)

makeEnvObj Builds environmental transition objects.

Description

Function that takes vectors of discrete environmental states (e.g. shaded vs open canopy habitats)
at time t and time t+1 and builds a transition (habitat) matrix from these.

Usage

makeEnvObj(dataf)

Arguments

dataf a dataframe with columns ‘covariate’ and ‘covariatel’ indicating environmental
covariate values at times t, and at t+1, respectively; these must take values of
sequential integers, starting at‘1’.

Value

an object of class envMatrix.

makeFecObj 63

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Horvitz & Schemske. 1995. Spatiotemporal variation in demographic transitions of a tropical
understory herb. Projection matrix analysis. Ecological Monographs 65, p155-192.

Horvitz, Ehrlen & Matlaga. 2010. Context-dependent pollinator limitation in stochastic environ-
ments: can increased seed set overpower cost of reproduction in an understorey herb? Journal of
Ecology 98, p268-278.

See Also

makeFecObj, makeSurvObj, makeIPMPmatrix, makeIPMFmatrix

Examples

dff <- generateData()
env <- makeEnvObj(dff)
env

makeFecObj Function to build fecundity objects

Description

Allows a series of different glms to be fit all on the way to fecundity, e.g., probability of flowering,
number of flower heads produced, etc; as well as fecundity into different discrete classes. Alter-
natively, the function creates fecundity objects following a specified list of formulas with specified
corresponding list of coefficients.

Usage

makeFecObj(dataf, fecConstants=data.frame(NA),
Formula=list(fec~size),Family="gaussian",
Transform="none",meanOffspringSize=NA,
sdOffspringSize=NA,offspringSplitter=data.frame(continuous=1),
vitalRatesPerOffspringType=data.frame(NA),fecByDiscrete=data.frame(NA),
offspringSizeExplanatoryVariables="1", coeff=NULL,doOffspring=TRUE,
reproductionType="sexual")

64 makeFecObj

Arguments

dataf a dataframe with columns "size", "sizeNext", "stage", "stageNext", and any ad-
ditional columns with fecundity data. UIf fecundity data is transformed via log,
etc, this MUST BE MADE CLEAR in the argument Transform since the fe-
cundity object produced must generate total reproductive output.)

fecConstants a list containing the value by which each of the fecundity rates will be multi-
plied in the order defined by the order in Formula. This data frame adjusts the
probability of establishment of seeds or other stages in sexual reproduction that
are not explicitly incorporated for each parent (e.g., 25% of seeds across all in-
dividuals germinate). The default is NA if no constants are used (equivalent to
multiplying by 1).

Formula a formulas describing the desired explanatory variables (interactions, etc) in
classical R style, i.e. separated by ‘+’, ‘*’, ‘:’ and the response variables of
choice. Possible covariates include ‘size’, ’size2’ (size^2), ‘size3’ (size^3),‘logsize’
(log(size)), and ‘covariate’ (if this name is used, the assumption is made that this
is a discrete covariate from which compound matrices may be constructed), and
any other covariates available in dataf. Again, these must appear in the order
defined by the Formula argument. See formula in base for more details.

Family a character vector containing the names of the families to be used for the glms,
e.g., binomial, poisson, etc. Again, these must appear in the order defined by
Formula

Transform a character vector containing the names of the transforms to be used for the
response variables, e.g., log, sqrt, -1, etc. Again, these must appear in the order
defined by Formula

meanOffspringSize

numeric vector, defining mean offspring size. Defaults to NA, in which case the
function will use to data to assess the mean offspring size according to the rela-
tionship defined in offspringSizeExplanatoryVariables (which either simply fits
a mean, or may fit more complex relationships linking maternal size to offspring
size).

sdOffspringSize

numeric vector, defining standard deviation of offspring size. Defaults to NA,
in which case the function will use the data to assess the standard deviation of
offspring size; as described for meanOffspringSize

offspringSplitter

dataframe with values defining the number of offspring going into the indicated
offspring category; will be re-scaled to sum to 1 within the function. This argu-
ment needs to be entered as a data.frame, and the names in the data.frame need
to precisely match the used stage names in the data file.

vitalRatesPerOffspringType

dataframe defining which fecundity rates (both functions and constants) apply to
which offspring category. This only needs to be specified when some fecundity
rates do not apply to all offspring categories. The offspring categories in the col-
umn names of this dataframe should match those in the offspringSplitter exactly.
The row names of the dataframe should match the fecundity column names in
the data file and the supplied fecundity constants, in that order. In the dataframe,

makeFecObj 65

a ’1’ indicates that a fecundity rate applies to an offspring category, while a ’0’
indicates an omission. For instance, establishment and seedling survival rates
may be applicable to seedlings, but not to seeds that go into a seedbank (de-
pending on the life cycle and definition of vital rates).

fecByDiscrete data.frame defining number of offspring produced by each discrete class ; de-
faults to 0. If specified, ALL discrete classes MUST appear in alphabetical or-
der, so NO "continuous". e.g. fecByDiscrete=data.frame(dormant=0,seedAge1=4.2,seedOld=0)

offspringSizeExplanatoryVariables

a character defining the relationship defining offspring size; the default is "1", in-
dicating simply fitting a mean and a variance; alternatives would including defin-
ing offspring size as a function of maternal size (i.e., offspringSizeExplanatory-
Variables="size") or more complex polynomials of size (i.e., offspringSizeEx-
planatoryVariables="size+size2"). The corresponding relationship is fitted to the
data contained in dataf, taking as the response variable the column "sizeNext"
in dataf for rows where the column "offspringNext" is equal to "sexual" and the
column "stageNext" is equal to "continuous".

coeff list of numeric vector of required coefficients to be imposed if dataf is NULL
for each element of the Formula list in order; must be compatible with Formula

doOffspring argument defining whether you wish to fit an offspring regression as part of this
function (TRUE), or do it separately (see makeOffspringObj); if this is FALSE,
other argument relating to the offspring distribution will be ignored

reproductionType

argument specifying if "sexual" or "clonal" offspring should be considered; de-
fault is "sexual".

Details

This function fits a suite of subfunctions of fecundity towards creating a Fecundity transition pro-
jection model; e.g., the probability of flowering as a function of size, the number of seeds produced
as a function of size, etc. Users can define the functional form of each relationship, as well as the
distribution and any transforms. There is also a possibility of defining reproduction from discrete
sizes into each of the subfunction outcomes; defined in the matrix fecByDiscrete.

Note that it is crucial that users appropriately set up the data to adequately reflect conditionality
in the fertility kernel; for example, if there are two columns, with one reflecting the probability of
flowering (0s and 1s) and the other reflecting seed output (integers) it is important that where the
probability of flowering is 0, seed output is set to NA, as otherwise, meaningless 0s in the seed
output column will bias the regression.

Finally, if the same variables are used in multiple equations, users should check for problems of
endogeneity.

Value

an object of class fecObj

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

66 makeFecObjInteger

See Also

makeSurvObj, makeGrowthObj, makeOffspringObj

Examples

dff <- generateData(type="discrete")
fv1 <- makeFecObj(dff,
offspringSplitter = data.frame(continuous = 0.2, seedAge1 = 0.8,
seedOld = 0),
fecByDiscrete = data.frame(dormant = 0, seedAge1 = 4.2, seedOld = 0))

#now without any data, imposing desired coefficients
fv1 <- makeFecObj(Formula=list(Fec~size),
offspringSplitter = data.frame(continuous = 0.2, dormant=0,
seedAge1 = 0.8),
fecByDiscrete = data.frame(dormant = 0, seedAge1 = 4.2),
coeff=list(c(1,1)), meanOffspringSize=1,sdOffspringSize=1)

makeFecObjInteger Function to build fecundity objects

Description

Allows a series of different glms to be fit all on the way to fecundity, e.g., probability of reproducing,
number of reproductive structures produced (e.g. flowers), etc; as well as fecundity into different
discrete classes.

Usage

makeFecObjInteger(dataf,
fecConstants = data.frame(NA),
Formula = list(fec~size),
Family = "gaussian",
Transform = "none",
meanOffspringSize = NA,
thetaOffspringSize = NA,
offspringSplitter = data.frame(continuous=1),
vitalRatesPerOffspringType=data.frame(NA),
fecByDiscrete = data.frame(NA),
offspringSizeExplanatoryVariables = "1",
distOffspring = "poisson",
coeff=NULL, doOffspring=TRUE,
reproductionType="sexual")

makeClonalObjInteger(dataf,

makeFecObjInteger 67

fecConstants = data.frame(NA),
Formula = list(fec~size),
Family = "gaussian",
Transform = "none",
meanOffspringSize = NA,
thetaOffspringSize = NA,
offspringSplitter = data.frame(continuous=1),
vitalRatesPerOffspringType = data.frame(NA),
fecByDiscrete = data.frame(NA),
offspringSizeExplanatoryVariables = "1",
distOffspring = "poisson",
coeff=NULL, doOffspring=TRUE)

Arguments

dataf a dataframe with columns "size", "sizeNext", "stage", "stageNext", and any ad-
ditional columns with fecundity data. If fecundity data is transformed via log,
etc, this MUST BE MADE CLEAR in the argument Transform since the fe-
cundity object produced must generate total reproductive output.)

fecConstants a list containing the value by which each of the fecundity rates will be multi-
plied in the order defined by the order in Formula. This data frame adjusts the
probability of establishment of seeds or other stages in sexual reproduction that
are not explicitly incorporated for each parent (e.g., 25% of seeds across all in-
dividuals germinate). The default is NA if no constants are used (equivalent to
multiplying by 1).

Formula a formulas describing the desired explanatory variables (interactions, etc) in
classical R style, i.e. separated by ‘+’, ‘*’, ‘:’ and the response variables of
choice. Possible covariates include ‘size’, ’size2’ (size^2), ‘size3’ (size^3),‘logsize’
(log(size)), and ‘covariate’ (if this name is used, the assumption is made that this
is a discrete covariate from which compound matrices may be constructed), and
any other covariates available in dataf. Again, these must appear in the order
defined by the Formula argument. See formula in base for more details.

Family a character vector containing the names of the families to be used for the glms,
e.g., binomial, poisson, etc. Again, these must appear in the order defined by
Formula

Transform a character vector containing the names of the transforms to be used for the
response variables, e.g., log, sqrt, -1, etc. Again, these must appear in the order
defined by Formula

meanOffspringSize

numeric vector, defining mean offspring size. Defaults to NA, in which case the
function will use to data to assess the mean offspring size according to the rela-
tionship defined in offspringSizeExplanatoryVariables (which either simply fits
a mean, or may fit more complex relationships linking maternal size to offspring
size).

thetaOffspringSize

numeric vector, defining size parameter of offspring size. It is only required if
the family of offspring size is negative binomial (rather than poisson). Defaults

68 makeFecObjInteger

to NA, in which case the function will use the data to assess this parameter using
dbinom.

offspringSplitter

dataframe with values defining the number of offspring going into the indicated
offspring category; will be re-scaled to sum to 1 within the function. This argu-
ment needs to be entered as a data.frame, and the names in the data.frame need
to precisely match the used stage names in the data file.

vitalRatesPerOffspringType

dataframe defining which fecundity rates (both functions and constants) apply to
which offspring category. This only needs to be specified when some fecundity
rates do not apply to all offspring categories. The offspring categories in the col-
umn names of this dataframe should match those in the offspringSplitter exactly.
The row names of the dataframe should match the fecundity column names in
the data file and the supplied fecundity constants, in that order. In the dataframe,
a ’1’ indicates that a fecundity rate applies to an offspring category, while a ’0’
indicates an omission. For instance, establishment and seedling survival rates
may be applicable to seedlings, but not to seeds that go into a seedbank (de-
pending on the life cycle and definition of vital rates).

fecByDiscrete data.frame defining number of offspring produced by each discrete class ; de-
faults to 0. If specified, ALL discrete classes MUST appear in alphabetical or-
der, so NO "continuous". e.g. fecByDiscrete=data.frame(dormant=0,seedAge1=4.2,seedOld=0)

offspringSizeExplanatoryVariables

a character defining the relationship defining offspring size; the default is "1", in-
dicating simply fitting a mean and a variance; alternatives would including defin-
ing offspring size as a function of maternal size (i.e., offspringSizeExplanatory-
Variables="size") or more complex polynomials of size (i.e., offspringSizeEx-
planatoryVariables="size+size2"). The corresponding relationship is fitted to the
data contained in dataf, taking as the response variable the column "sizeNext"
in dataf for rows where the column "offspringNext" is equal to "sexual" and the
column "stageNext" is equal to "continuous".

distOffspring character indicating the desired distribution of offspring sizes (poisson or nega-
tive binomial)

coeff not yet implemented
doOffspring argument defining whether you wish to fit an offspring regression as part of this

function (TRUE), or do it separately (see makeOffspringObj); if this is FALSE,
other argument relating to the offspring distribution will be ignored

reproductionType

argument specifying if "sexual" or "clonal" offspring should be considered; de-
fault is "sexual".

Details

See help for makeFecObj; this is exactly analagous, except that it uses the poisson or negative
binomial as descriptors for offspring size

Value

an object of class fecObjInteger

makeGrowthObj 69

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeSurvObj, makeGrowthObj,makeFecObj

Examples

Open dataset for the herbaceous perennial Cryptantha flava where
the state variable is integer (number of rosettes)
data(dataIPMpackCryptantha)
head(dataIPMpackCryptantha)
d <- dataIPMpackCryptantha

#See the description of the data for information on the variables
help(dataIPMpackCryptantha)

For this example, focus only on the first annual transition
available in the dataset
d1 <- d[d$year==2004,]

#Create fecundity object with integer data
fo <- makeFecObjInteger(d1, Formula = fec1~size, distOffspring = "poisson")

#Example with imposed offspring object
off1 <- makeOffspringObj(dataf = d1, Formula = sizeNext~1, Family="poisson")
fo <- makeFecObjInteger(d1, Formula = fec1~size, distOffspring = "poisson",
doOffspring=FALSE)
Fmatrix <- makeIntegerFmatrix(fecObj = fo, offspringObj=off1)

makeGrowthObj Function to build growth objects

Description

A function that fits regressions that define growth (following next size, size increment, or log size
increment) and from these build growth objects for which methods to build an IPM object are de-
fined; alternatively, the function creates growth objects following a specified formula with specified
coefficients and sd.

70 makeGrowthObj

Usage

makeGrowthObj(dataf=NULL, Formula = sizeNext ~ size,
regType = "constantVar", Family = "gaussian", link = NULL, coeff=NULL,sd=NULL)

Arguments

dataf a dataframe with columns ‘size’ and ‘sizeNext’(‘size’ is size at t, ‘sizeNext’ is
size at t+1); facultatively, dataf may include ‘covariate’ and ‘covariatel’ for a sin-
gle discrete covariate, indicating values at t, and at t+1, respectively; these must
take values of sequential integers, starting at ‘1’. For models fitting growth in-
crement, ’incr’ or ’logincr’ may be directly provided as a column in the dataframe,
otherwise they are calculated as dataf$sizeNext - dataf$size or log(dataf$sizeNext
- dataf$size), respectively.

Formula a formula describing the desired explanatory variables (interactions, etc) accord-
ing to the R notation for formula. style, i.e. separated by ‘+’, ‘*’, ‘:’ and
response variable. Possible covariates include ‘size’, ’size2’ (size^2), ‘size3’
(size^3),‘logsize’ (log(size)), ‘logsize2’ (log(size)^2), and ‘covariate’ (if this
name is used, the assumption is made that this is a discrete covariate from which
compound matrices may be constructed); or any other covariate available in
dataf.

regType possible values include ‘constantVar’ or ‘changingVar’

Family possible values include ‘gaussian’, ‘poisson’, ‘negbin’

link defaults to NULL, currently only relevant with Family="negbin", and only "log"
and "identity" are permitted

coeff numeric vector of required coefficients to be imposed if dataf is NULL; must be
compatible with Formula

sd numeric of required sd to be imposed if dataf is NULL

Value

An object of class growthObj, or growthObjPois, growthObjIncr, or growthObjLogIncr; or growthOb-
jDeclineVar, or growthObjIncrDeclineVar, or growthObjLogIncrDeclineVar. These are S4 objects
which contain the slots:

fit an object of class lm or glm or gls that can be used with predict in the growth
methods

Slots can be listed by using slotNames(growthObj)

Note

See manual for details on building case-specific growth objects. Note that DeclineVar objects cannot
currently be constructed without a data-frame.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

makegrowthObjHossfeld 71

See Also

makeSurvObj, makeFecObj

Examples

#generate data
dff <- generateData()
#make simple linear regression growth object relating size to size at t+1
(gr1 <- makeGrowthObj(dataf = dff, Formula = sizeNext~size))
#same but relating size to incr
(gr1 <- makeGrowthObj(dataf = dff, Formula = incr ~ size))

#assess fit
picGrow(dff,gr1)

#same but relating size to incr and discrete covariate
(gr1 <- makeGrowthObj(dataf = dff, Formula = incr ~ size + covariate,
regType = "changingVar"))
#with declining increment
(gr1 <- makeGrowthObj(dataf = dff, Formula = incr ~ size + covariate,
regType = "changingVar"))

#now specifying parameters and supplying no data
gr1 <- makeGrowthObj(Formula = incr ~ size + covariate,coeff=c(1,1,1),sd=1)

makegrowthObjHossfeld Function to make a Hossfeld Growth Object

Description

Takes a data-frame with at minimum columns size and sizeNext; and fits a Hossfeld type growth
function to increment - if length(dataf$incr) is zero, it will calculate dataf$increment as the differ-
ence between size and sizeNext; otherwise it will take the column provided

Usage

makegrowthObjHossfeld(dataf)

Arguments

dataf a dataframe with columns ‘size’ and ‘sizeNext’(‘size’ is size at t, ‘sizeNext’ is
size at t+1);

Value

Returns a growth object of class growthObjHossfeld for which growth methods exist.

72 makeIntegerFmatrix

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

Examples

dff <- generateData()
gr1 <- makegrowthObjHossfeld(dff)

makeIntegerFmatrix Builds P and F matrices built off regressions fitted to discrete vari-
ables (with probability mass functions rather than probability density
functions).

Description

Uses survival, growth and fecundity objects to construct a matrix defining per-capita contribution
to recruitment stages (e.g., propagules [seed, spore], seedlings, calves) by reproductive stages due
to sexual reproduction (for the F matrix); and transition probabilities determined from survival
and growth to quasi-continuous stages based on integer data (e.g. number of leaves) as opposed
to truly continuous data (e.g. mass). NOTE - old createIntegerPmatrix is being deprecated; use
makeIntegerPmatrix instead; etc

Usage

makeIntegerFmatrix(fecObj, nEnvClass = 1, meshpoints = 1:20,
chosenCov = data.frame(covariate=1),
preCensus = TRUE, survObj = NULL, growObj = NULL, offspringObj=NULL)

makeIntegerPmatrix(nEnvClass = 1,
meshpoints = 1:20,
chosenCov = data.frame(covariate = 1),
growObj, survObj,
discreteTrans = 1)

Arguments

fecObj fecundity object.

nEnvClass numeric, number of environmental classes, always = 1 for non-compound ma-
trices.

meshpoints numeric, identifying meshpoints

chosenCov data-frame indicating level of the discrete covariate, or range of values where
multiple covariates are modeled.

preCensus logical (TRUE or FALSE), indicating whether the fecundity object should rep-
resent an interval between pre-breeding or a post-breeding censuses. defaults to
TRUE (pre-breeding census), meaning that all reproduction and offspring rates
required for the F matrix are embedded in fecObj. Alternatively, an F matrix

makeIntegerFmatrix 73

based on post-breeding census (preCensus=FALSE) requires additional survObj
and growObj, to cover the survival and growth of the parents until the reproduc-
tive event.

survObj survival object, describing the survival of parents from a census until the repro-
ductive event starts (at some point during the inter-census time step). If preCen-
sus = FALSE but no survival object is provided, it is assumed that all individuals
survive to the breeding event.

growObj growth object, describing the growth of parents that survive until the reproduc-
tive event starts. Warning: this growth object is still ignored in makeIPMFmatrix
in the current version of IPMpack. It will become functional in coming versions.
So far it is assumed that at time of breeding the individuals have the same size
as at the beginning of the time interval.

discreteTrans object of class discreteTrans, or numeric.

offspringObj growth object, describing the size of offspring (this process may alternatively
appear in fecObj).

Details

do check whether the Pmatrix adequately reflects survival by using diagnosticsPmatrix().

Value

an object of class IPMmatrix with dimensions length(meshpoints)*length(meshpoints), or length(meshpoints)+nrow(discreteTrans).

Note

With thanks to Dr Alden Griffith.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

For information on F and P matrix: Caswell. 2001. Matrix population models: construction,
analysis, and interpretation. 2nd ed. Sinauer. p110-112.

See Also

makeDiscreteTransInteger, makeFecObjInteger

Examples

Open dataset for the herbaceous perennial Cryptantha flava
where the state variable is integer (number of rosettes)
data(dataIPMpackCryptantha)
head(dataIPMpackCryptantha)

74 makeIntegerFmatrix

d <- dataIPMpackCryptantha

#See the description of the data for information on the variables
help(dataIPMpackCryptantha)

For this example, focus only on the first annual transition available
in the dataset
d1 <- d[d$year==2004,]

#Make survival, growth and fecundity objects assuming a poisson distribution
so <- makeSurvObj(d1)
go1 <- makeGrowthObj(d1, Formula = sizeNext~size, Family = "poisson")
fo <- makeFecObjInteger(d1, Formula = fec1~size, distOffspring = "poisson")

#Create P and F matrices
Pmatrix1 <- makeIntegerPmatrix(growObj = go1, survObj = so, meshpoints = 1:101,

discreteTrans = 1)
Fmatrix <- makeIntegerFmatrix(fecObj = fo, meshpoints = 1:101)

par(mfrow = c(1, 3), bty = "l")

plot(d1$size, d1$sizeNext, xlab = "Stage at t", ylab = "Stage at t+1")

image(Pmatrix1@meshpoints, Pmatrix1@meshpoints, t(Pmatrix1),
xlab = "Stage at t",
ylab = "Stage at t+1")
image(Fmatrix@meshpoints, Fmatrix@meshpoints, t(Fmatrix),
xlab = "Stage at t",
ylab = "Stage at t+1")

#Same approach, but with negative binomial instead of
poisson for stage transitions
go2 <- makeGrowthObj(d1, Formula = sizeNext~size, Family = "negbin")

#Recalculate the P matrix
Pmatrix2 <- makeIntegerPmatrix(growObj = go1, survObj = so,

meshpoints = 1:101, discreteTrans = 1)

par(mfrow = c(1, 3), bty = "l")
plot(d1$size, d1$sizeNext, xlab = "Stage at t", ylab = "Stage at t+1")
points(1:100, predict(go2@fit[[1]], newdata = data.frame(size = 1:100),
type = "response"), type = "l", col = 2)

image(Pmatrix2@meshpoints, Pmatrix2@meshpoints, t(Pmatrix2),
xlab = "Stage at t",
ylab = "Stage at t+1")
image(Fmatrix@meshpoints, Fmatrix@meshpoints, t(Fmatrix),
xlab = "Stage at t",
ylab = "Stage at t+1")

#The following repeats the same approach, but with negative binomial
instead of poisson for stage transitions
dff <- generateData()

makeIPMCmatrix 75

go2 <- makeGrowthObj(d1, Family = "negbin")
Pmatrix2 <- makeIntegerPmatrix(growObj = go2, survObj = so,

meshpoints = 1:101, discreteTrans = 1)

makeIPMCmatrix Builds C matrices.

Description

Uses clonality objects to construct a matrix defining per-capita contribution to clonal stages (e.g.,
propagules [seed, spore], seedlings, calves) by clonal reproduction. NOTE - old createIPMCmatrix
is being deprecated; use makeIPMCmatrix instead.

Usage

makeIPMCmatrix(clonalObj, nEnvClass = 1, nBigMatrix = 50, minSize = -1,
maxSize = 50, chosenCov = data.frame(covariate=1), integrateType="midpoint",
correction="none",preCensus = TRUE, survObj = NULL, growObj = NULL,
offspringObj=NULL)

Arguments

clonalObj clonal reproduction object; currently essentially identical to a fecundity repro-
duction object

nEnvClass numeric, number of environmental classes, always = 1 for non-compound ma-
trices.

nBigMatrix numeric, number of size bins in the P matrix, defaults to 50.

minSize numeric, minimum size of the P matrix, defaults to -1.

maxSize numeric, maximum size of the P matrix, defaults to 50.

chosenCov data-frame indicating level of the discrete covariate, or range of values where
multiple covariates are modeled.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function)

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for total fertility at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

preCensus logical (TRUE or FALSE), indicating whether the fecundity object should rep-
resent an interval between pre-breeding or a post-breeding censusses. defaults
to TRUE (pre-breeding census), meaning that all reproduction and offspring
rates required for the F matrix are embedded in fecObj. Alternatively, an F
matrix based on post-breeding census (preCensus=FALSE) requires additional
survObj and growObj, to cover the survival and growth of the parents until the
reproduction event.

76 makeIPMCmatrix

survObj survival object, describing the survival of parents from a census until the repro-
duction event starts (at some point during the inter-census time step). If preCen-
sus = FALSE but no survival object is provided, it is assumed that all individuals
survive to the breeding event.

growObj growth object, describing the growth of parents that survive until the reproduc-
tion event starts. Warning: this growth object is still ignored in makeIPMF-
matrix in the current version of IPMpack. It will become functional in coming
versions. So far it is assumed that at time of breeding the individuals have the
same size as at the beginning of the time interval.

offspringObj growth object, describing the size of offspring (this process may alternatively
appear in fecObj).

Value

an object of class IPMmatrix of dimensions nBigMatrix or nBigMatrix+nDiscrete classes (defined
by clonalObj@offspringSplitter-1).

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

For information on C matrix: Caswell. 2001. Matrix population models: construction, analysis,
and interpretation. 2nd ed. Sinauer. p110-112.

For midpoint: Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for
trees: a new parameterization method and a validation of model output. Journal of Ecology 98,
p345-355.

For multiple-vital rate integration on fecundity: Yang, Jongejans, Yang & Bishop. 2011. The effect
of consumers and mutualists of Vaccinum membranaceum at Mount St. Helens: dependence on
successional context. PLoS One 10, p1-11.

See Also

makeIPMPmatrix,makeIPMFmatrix,makeIPMmatrix

Examples

Data with only continuous stage and one habitat
dff <- generateData()
dff$fec[dff$fec==0] <- NA
cv1 <- makeClonalObj(dff, Formula = fec~size, Transform = "log")
Cmatrix <- makeIPMCmatrix(clonalObj = cv1, nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE), maxSize = max(dff$size, na.rm = TRUE))

image(Cmatrix@meshpoints, Cmatrix@meshpoints, t(Cmatrix),
xlab = "Continuous (e.g. size) stage at t",
ylab = "Continous (e.g. size) stage at t+1")

makeIPMFmatrix 77

makeIPMFmatrix Builds F matrices.

Description

Uses fecundity objects to construct a matrix defining per-capita contribution to recruitment stages
(e.g., propagules [seed, spore], seedlings, calves) by reproductive stages due to sexual reproduction.
NOTE - old createIPMFmatrix is being deprecated; use makeIPMFmatrix instead.

Usage

makeIPMFmatrix(fecObj, nEnvClass = 1, nBigMatrix = 50, minSize = -1,
maxSize = 50, chosenCov = data.frame(covariate=1),
integrateType="midpoint", correction="none",
preCensus = TRUE, survObj = NULL, growObj = NULL, offspringObj=NULL)

Arguments

fecObj fecundity object.

nEnvClass numeric, number of environmental classes, always = 1 for non-compound ma-
trices.

nBigMatrix numeric, number of size bins in the F matrix, defaults to 50.

minSize numeric, minimum size of the F matrix, defaults to -1.

maxSize numeric, maximum size of the F matrix, defaults to 50.

chosenCov data-frame indicating level of the discrete covariate, or range of values where
multiple covariates are modeled.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function)

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for total fertility at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

preCensus logical (TRUE or FALSE), indicating whether the fecundity object should rep-
resent an interval between pre-breeding or a post-breeding censusses. defaults
to TRUE (pre-breeding census), meaning that all reproduction and offspring
rates required for the F matrix are embedded in fecObj. Alternatively, an F
matrix based on post-breeding census (preCensus=FALSE) requires additional
survObj and growObj, to cover the survival and growth of the parents until the
reproduction event.

survObj survival object, describing the survival of parents from a census until the repro-
duction event starts (at some point during the inter-census time step). If preCen-
sus = FALSE but no survival object is provided, it is assumed that all individuals
survive to the breeding event.

78 makeIPMFmatrix

growObj growth object, describing the growth of parents that survive until the reproduc-
tion event starts. Warning: this growth object is still ignored in makeIPMF-
matrix in the current version of IPMpack. It will become functional in coming
versions. So far it is assumed that at time of breeding the individuals have the
same size as at the beginning of the time interval.

offspringObj growth object, describing the size of offspring (this process may alternatively
appear in fecObj).

Value

an object of class IPMmatrix of dimensions nBigMatrix or nBigMatrix+nDiscrete classes (defined
by fecObj@offspringSplitter-1).

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

For information on F matrix: Caswell. 2001. Matrix population models: construction, analysis, and
interpretation. 2nd ed. Sinauer. p110-112.

For midpoint: Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for
trees: a new parameterization method and a validation of model output. Journal of Ecology 98,
p345-355.

For multiple-vital rate integration on fecundity: Yang, Jongejans, Yang & Bishop. 2011. The effect
of consumers and mutualists of Vaccinum membranaceum at Mount St. Helens: dependence on
successional context. PLoS One 10, p1-11.

For information on unintentional eviction from IPMs (which the various corrections try and account
for) see Williams et al. 2012 Avoiding unintentional eviction from integral projection models.
Ecology.

See Also

makeIPMPmatrix,makeIPMCmatrix,makeIPMmatrix

Examples

Data with only continuous stage and one habitat
dff <- generateData()
dff$fec[dff$fec==0] <- NA
fv1 <- makeFecObj(dff, Formula = fec~size, Transform = "log")
Fmatrix <- makeIPMFmatrix(fecObj = fv1, nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), correction="constant")

slotNames(Fmatrix)

image(Fmatrix@meshpoints, Fmatrix@meshpoints, t(Fmatrix),

makeIPMmatrix 79

xlab = "Continuous (e.g. size) stage at t",
ylab = "Continous (e.g. size) stage at t+1")

makeIPMmatrix Builds IPM matrices.

Description

Uses survival/growth, fecundity and optionally clonal kernels to make an IPM kernel.

Usage

makeIPMmatrix(Pmatrix,Fmatrix,Cmatrix=NULL)

Arguments

Pmatrix A survival/growth kernel constructed with makeIPMPmatrix().

Fmatrix A fecundity kernel constructed with makeIPMFmatrix().

Cmatrix A clonal kernel, constructed with makeIPMCmatrix(). Defaults to NULL since
clonal reproduction may not be applicable for many species.

Details

A convenience function that makes an IPM kernel from the component kernels with all the same
slots. All kernels being combined must have the same dimension, i.e. dim(Pmatrix@.Data) is the
same as dim(Fmatrix@.Data).

Value

an object of class IPMmatrix with dimensions nBigMatrix*nBigMatrix, or nbig.matrix+nrow(discreteTrans).

Author(s)

Cory Merow, C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans
& Cory Merow.

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner & Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

For information on P matrix: Caswell. 2001. Matrix population models: construction, analysis, and
interpretation. 2nd ed. Sinauer. p110-112.

For information on unintentional eviction from IPMs (which the various corrections try and account
for) see Williams et al. 2012 Avoiding unintentional eviction from integral projection models.
Ecology.

80 makeIPMPmatrix

See Also

makeIPMPmatrix,makeIPMFmatrix,makeIPMCmatrix, diagnosticsPmatrix, makeDiscreteTrans

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(
growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff),
nBigMatrix=20,
minSize = min(dff$size, na.rm = TRUE),
maxSize=max(dff$size, na.rm=TRUE))
dff$fec[dff$fec==0] <- NA
fv1 <- makeFecObj(dff, Formula = fec~size, Transform = "log")
Fmatrix <- makeIPMFmatrix(
fecObj = fv1,
nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE))
IPMmatrix <- makeIPMmatrix(Pmatrix,Fmatrix)
slotNames(IPMmatrix)

require(fields)
par(mfrow=c(2,2))
image.plot(IPMmatrix@meshpoints, IPMmatrix@meshpoints, t(Pmatrix),
xlab = "Size(t)",
ylab = "Size(t+1)",
main = "Survival/Growth Kernel")
image.plot(IPMmatrix@meshpoints, IPMmatrix@meshpoints, t(Fmatrix),
xlab = "Size (t)",
ylab = "Size(t+1)",
main = "Fecundity Kernel")
image.plot(IPMmatrix@meshpoints, IPMmatrix@meshpoints, t(IPMmatrix),
xlab = "Size(t)",
ylab = "Size(t+1)",
main = "IPM Kernel")
trick to visualize the whole IPM kernel when the Fmatrix has values>>Pmatrix
image.plot(IPMmatrix@meshpoints, IPMmatrix@meshpoints, t(IPMmatrix)^.1,
xlab = "Size(t)",
ylab = "Size(t+1)",
main = "IPM Kernel^(.01)")

makeIPMPmatrix Builds P matrices.

Description

Uses growth and survival objects to construct a matrix defining probabilities for transitions between
sizes due to growth and survival. Extensions for transition to discrete classes are possible. NOTE -
old createIPMPmatrix is being deprecated; use makeIPMPmatrix instead.

makeIPMPmatrix 81

Usage

makeIPMPmatrix(nEnvClass = 1, nBigMatrix = 50,
minSize = -1, maxSize = 50, chosenCov = data.frame(covariate=1),
growObj, survObj, discreteTrans=1,
integrateType = "midpoint", correction="none")

Arguments

nEnvClass numeric, number of environmental classes, always = 1 for non-compound ma-
trices.

nBigMatrix numeric, number of size bins in the P matrix, defaults to 50.

minSize numeric, minimum size of the P matrix, defaults to -1.

maxSize numeric, maximum size of the P matrix, defaults to 50.

chosenCov data-frame indicating level of the discrete covariate, or range of values where
multiple covariates are modeled.

growObj growth object.

survObj survival object.

discreteTrans object of class discreteTrans, or numeric.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function).

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for survival at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

Details

The number of bins (nBigMatrix) is combined with the minimum and maximum size to define the
meshpoints of the IPM. Bins should be sufficient and the size range should encompass the size range
of the data. If a "discreteTrans" exists, then discrete stages will be added to the IPM structure. If
multiple discrete covariate levels are available, chosenCov identifies the covariate value for which
an IPM is required; if a series of covariates are being modeled, chosenCov is a vector of these
covariates, and growth will reflect these values.

Value

an object of class IPMmatrix with dimensions nBigMatrix*nBigMatrix, or nbig.matrix+nrow(discreteTrans).

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

82 makeIPMPmatrix

References

Easterling, Ellner & Dixon. 2000. Size-specific sensitivity: a new structured population model.
Ecology 81, p694-708.

Ellner & Rees. 2006. Integral projection models for species with complex demography. The
American Naturalist 167, p410-428.

For information on P matrix: Caswell. 2001. Matrix population models: construction, analysis, and
interpretation. 2nd ed. Sinauer. p110-112.

For information on unintentional eviction from IPMs (which the various corrections try and account
for) see Williams et al. 2012 Avoiding unintentional eviction from integral projection models.
Ecology.

See Also

makeIPMFmatrix,makeIPMmatrix, diagnosticsPmatrix, makeDiscreteTrans

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize=max(dff$size, na.rm=TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))

image(Pmatrix@meshpoints, Pmatrix@meshpoints, t(Pmatrix),
xlab = "Continuous (e.g. size) stage at t",
ylab = "Continuous (e.g. size) stage at t+1")

Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize=max(dff$size, na.rm=TRUE),

growObj = makeGrowthObj(dff,regType="changingVar"),
survObj = makeSurvObj(dff))

image(Pmatrix@meshpoints, Pmatrix@meshpoints, t(Pmatrix),
xlab = "Continuous (e.g. size) stage at t",
ylab = "Continuous (e.g. size) stage at t+1")

#example with discrete transition matrix
dff <- generateData(type="discrete")
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize=max(dff$size, na.rm=TRUE), discreteTrans=makeDiscreteTrans(dff),
growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))

#discrete stages not plotted
image(Pmatrix@meshpoints, Pmatrix@meshpoints,
t(log(Pmatrix[2:length(Pmatrix@meshpoints),2:length(Pmatrix@meshpoints)])),
xlab = "Continuous (e.g. size) stage at t",
ylab = "Continuous (e.g. size) stage at t+1")

makeOffspringObj 83

makeOffspringObj Function to build offspring objects

Description

A function that fits regressions that define offspring size and from these build growth objects for
which methods to build an IPM object are defined; alternatively, the function creates offspring ob-
jects following a specified formula with specified coefficients and sd. Note that if an "offspringNext"
column is available in the data, the data will be subsetted based on whether offspringType="sexual"
or "clonal" (the default is "sexual"); - otherwise, appropriate data must be supplied.

Usage

makeOffspringObj(dataf=NULL, Formula = sizeNext ~ size,
regType = "constantVar", Family = "gaussian", link = NULL,
coeff=NULL,sd=NULL, reproductionType="sexual")

Arguments

dataf a dataframe with columns ‘size’ and ‘sizeNext’(‘size’ is size of parent at t, and
may not be known, ‘sizeNext’ is offspring size at t+1); facultatively, dataf may
include ‘covariate’ and ‘covariatel’ for a single discrete covariate, indicating
values at t, and at t+1, respectively; these must take values of sequential integers,
starting at ‘1’.

Formula a formula describing the desired explanatory variables (interactions, etc) accord-
ing to the R notation for formula. style, i.e. separated by ‘+’, ‘*’, ‘:’ and
response variable. Possible covariates include ‘size’, ’size2’ (size^2), ‘size3’
(size^3),‘logsize’ (log(size)), ‘logsize2’ (log(size)^2), and ‘covariate’ (if this
name is used, the assumption is made that this is a discrete covariate from which
compound matrices may be constructed); or any other covariate available in
dataf.

regType possible values include ‘constantVar’ or ‘changingVar’

Family possible values include ‘gaussian’, ‘poisson’, ‘negbin’

link defaults to NULL, currently only relevant with Family="negbin", and only "log"
and "identity" are permitted

coeff numeric vector of required coefficients to be imposed if dataf is NULL; must be
compatible with Formula

sd numeric of required sd to be imposed if dataf is NULL

reproductionType

whether the relationship should be fitted for sexual or clonal offspring; the de-
fault is "sexual"; this will only be relevant if data is provided and has a column
"offspringNext"

84 makeOffspringObj

Value

An object of class growthObj, or growthObjPois, growthObjIncr, or growthObjLogIncr; or growthOb-
jDeclineVar, or growthObjIncrDeclineVar, or growthObjLogIncrDeclineVar. These are S4 objects
which contain the slots:

fit an object of class lm or glm or gls that can be used with predict in the growth
methods

Slots can be listed by using slotNames(growthObj)

Note

Note that DeclineVar objects cannot currently be constructed without a data-frame.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

See Also

makeGrowthObj, makeSurvObj, makeFecObj

Examples

#generate data
dff <- generateData()

#make simple linear regression growth object relating size to size at t+1
off1 <- makeOffspringObj(dataf = dff, Formula = sizeNext~1)

#now specifying parameters and supplying no data
off1 <- makeOffspringObj(Formula = incr ~ size + covariate,coeff=c(1,1,1),sd=1)

##make an Fmatrix with this
dff<-generateData()
dff$fec[dff$fec==0] <- NA

off1 <- makeOffspringObj(dataf = dff, Formula = sizeNext~1)
fv1 <- makeFecObj(dff, Formula = fec~size, Transform = "log",

doOffspring=FALSE)
Fmatrix1 <- makeIPMFmatrix(fecObj = fv1, nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE), maxSize = max(dff$size,
na.rm = TRUE), correction="constant", offspringObj=off1)

#compare with the other approach (where offspring object is not separate)
fv2 <- makeFecObj(dff, Formula = fec~size, Transform = "log",
offspringSizeExplanatoryVariables = "1", doOffspring=TRUE)
Fmatrix2 <- makeIPMFmatrix(fecObj = fv2, nBigMatrix = 20,
minSize = min(dff$size, na.rm = TRUE), maxSize = max(dff$size,
na.rm = TRUE), correction="constant", offspringObj=NULL)

par(mfrow=c(1,2))

makeSurvObj 85

image(Fmatrix1); image(Fmatrix2)

makeSurvObj Functions to build survival objects

Description

A function to fit logistic regressions defining survival following user defined formulas (e.g., size+size^2,
etc) to build survival objects for which methods to build an IPM object are defined.

Usage

makeSurvObj(dataf,Formula=surv~size+size2, coeff=NULL)

Arguments

dataf a dataframe with columns ‘size’ and ‘surv’(‘size’ is size at t, ‘surv’ is 0 for death
of the individual and 1 for survival); facultatively, dataf may include ‘covariate’
and ‘covariatel’ for a single discrete covariate, indicating values at t, and at t+1,
respectively; these must take values of sequential integers, starting at ‘1’.

Formula a formula describing the desired explanatory variables (interactions, etc) in clas-
sical R style, i.e. separated by ‘+’, ‘*’, ‘:’. Possible covariates include ‘size’,
’size2’ (size^2), ‘size3’ (size^3),‘logsize’ (log(size)), ‘logsize2’ (log(size)^2),
and ‘covariate’. Response should be ’surv’ to match dataf

coeff numeric vector of required coefficients to be imposed if dataf is NULL; must be
compatible with Formula

Value

An object of class survObj which is a S4 object which contains the slots:

fit an object of class lm or glm that can be used with predict in the survival methods

Slots can be listed by using slotNames(survObj)

Note

See manual for details on building case-specific survival objects.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

See Also

picSurv

86 meanLifeExpect

Examples

#generate data
dff <- generateData()
#make simple logistic regression survival object relating survival to size at t
sv1 <- makeSurvObj(dff, Formula=surv~size)
#assess fit for model with discrete environmental classes fitted
sv1 <- makeSurvObj(dff, Formula=surv~size+covariate)

#now specifying parameters and supplying no data
sv1 <- makeSurvObj(Formula = surv ~ size + covariate,coeff=c(1,1,1))

meanLifeExpect Calculates the mean life expectancy.

Description

Provided a P matrix, which defines survival transitions across stages, this function outputs a vector
defining life expectancy in units of the time step used (see convertIncrement()), for each of the size
bins.

Usage

meanLifeExpect(IPMmatrix)

Arguments

IPMmatrix an IPMmatrix object defining survival transitions.

Details

Note that more complex approaches for discretely varying environments (e.g., as in Tuljapurkar &
Horvitz 2006.) have yet to be implemented.

Value

A vector of life expectancies each corresponding to a value of the size bins defined by Pma-
trix@meshpoints.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

meanLifeExpect 87

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p118-120.

Cochran & Ellner. 1992. Simple methods for calculating age-based life history parameters for
stage-structured populations. Ecological Monographs 62, p345-364.

Tuljapurkar & Horvitz. 2006. From stage to age in variable environments. Life expectancy and
survivorship. Ecology 87, p1497-1509.

See Also

makeIPMPmatrix

Examples

With a single continuous state variable (e.g. size):
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj=makeGrowthObj(dff),
survObj = makeSurvObj(dff))
meanLifeExpect(Pmatrix)

Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))

plot(meanLifeExpect(Pmatrix), ylab = "Mean life expectancy",
xlab = "Continuous (e.g. size) stage", type = "l", col="dark gray",
ylim = c(0,max(meanLifeExpect(Pmatrix))))

With continuous (e.g. size) and discrete (e.g. seedbank) stages:
dff <- generateData(type="discrete")
dff$covariate <- sample(1:3, size = nrow(dff), replace = TRUE)
dff$covariateNext <- sample(1:3, size = nrow(dff), replace = TRUE)
discM <- makeDiscreteTrans(dff)
Pmatrix <- makeCompoundPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), envMatrix = makeEnvObj(dff),
growObj = makeGrowthObj(dff, Formula = sizeNext~size+size2+covariate),
survObj = makeSurvObj(dff, Formula = surv~size+size2+covariate),
discreteTrans = discM)
mLE <- meanLifeExpect(Pmatrix)

showing three environments on different panels,
life expectancy of discrete stages
shown at level of the first size class
par(mfrow=c(max(Pmatrix@env.index),1))

xvals <- c(rep(Pmatrix@meshpoints[1],ncol(discM@discreteTrans)-1),
Pmatrix@meshpoints)

for (k in 1:max(Pmatrix@env.index)) {
indx <- ((k-1)*(ncol(discM@discreteTrans)-1+length(Pmatrix@meshpoints))+1):

88 passageTime

(k*(ncol(discM@discreteTrans)-1+length(Pmatrix@meshpoints)))

plot(xvals,mLE[indx],
ylab = "Mean life expectancy",
xlab = "Continuous (e.g. size) and discrete (e.g. seedbank) stages",
type = "l", col = "dark gray", ylim = c(0,max(mLE)),
main=paste("habitat ",k,sep=""))
}

passageTime Defines passage time to a chosen continuous stage.

Description

Estimates the time in units of the chosen time-steps (see convertIncrement()) that it will take to
reach a chosen continuous (e.g. size) stage for the first time conditional on surviving from each of
the meshpoints of the IPM; currently not defined for matrices with discrete as well as continuous
stage categories.

Usage

passageTime(chosenSize, IPMmatrix)

Arguments

chosenSize numeric, the target size.

IPMmatrix an IPMmatrix object describing growth-survival transitions (a P matrix).

Details

Passage time for values exactly equal to the chosen size (targetSize) are one year, because of way
the conditionals are framed. Values slightly less than the target size may on average take longer due
to variance in growth, mortality, leading to discontinuities in the pattern of passage time over age.
Passage time from values > than targetSize should be ignored (space to the right of the red vertical
line in example below), unless dealing with an organism that is able to display retrogression. Use
stochPassageTime for compound matrices.

Value

A vector of times in the units of the chosen time-steps corresponding to each of the IPM meshpoints.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

picGrow 89

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p119.

Metcalf, Horvitz, Tuljapurkar & Clark. 2009. A time to grow and a time to die: a new way to
analyze the dynamics of size, light, age and death of tropical trees. Ecology 90, p2766-2778.

For bias in this estimation where variance in growth is small relative to the size range: Zuidema,
Jongejans, Chien, During & Schieving. 2010. Integral Projection Models for trees: a new parame-
terization method and a validation of model output. Journal of Ecology 98, p345-355.

For species with shrinkage: Salguero-Gomez & Casper. 2010. Keeping shrinkage in the demo-
graphic loop. Journal of Ecology 98, p313-323.

See Also

meanLifeExpect, ~~~

Examples

With a single continuous state variable (e.g. size)
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), correction="constant")
targetSize <- 8
passage <- passageTime(targetSize, Pmatrix)

plot(Pmatrix@meshpoints, passage, ylab = "Passage time",
xlab = "Continuous (e.g. size) stage",

type = "l", col = "dark gray", ylim = c(0, max(passage)),
xlim=c(Pmatrix@meshpoints[1],targetSize+1))
abline(v = targetSize, col="red")

picGrow Makes pictures of data with growth models

Description

Takes the data file and a growth object and shows the model fit over the data.

Usage

picGrow(dataf, growObj, mainTitle = "Growth",...)

90 picSurv

Arguments

dataf a dataframe with columns ‘size’ and ‘sizeNext’(‘size’ is continuous stage vari-
able at t, ‘sizeNext’ is stage variable at t+1); facultatively, dataf may include
‘covariate’ and ‘covariateNext’ for a single discrete covariate, indicating val-
ues at t, and at t+1, respectively; these must take values of sequential integers,
starting at ‘1’. For models fitting growth increment, ’incr’ or ’logincr’ may be
directly provided as a column in the dataframe, otherwise they are calculated as
dataf$sizeNext-dataf$size or log(dataf$sizeNext - dataf$size), respectively.

growObj an object of class growthObj that contains a fit for which R has methods for the
function "predict".

mainTitle a character string that will be used as in the ‘main’ argument of plot. Defaults
to ‘Growth’.

... other arguments to plot

Details

Note that this model will only work with growth objects that contain objects of class glm or lm, i.e.
ones for which R has defined methods for the function "predict".

Value

Returns nothing.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeGrowthObj, picSurv

Examples

dff <- generateData()
gr1 <- makeGrowthObj(dff)
picGrow(dff, gr1)

picSurv Makes pictures of survival.

Description

Produces figures of value for assessing survival fit given data.

plotGrowthModelComp 91

Usage

picSurv(dataf, survObj, ncuts = 20, makeTitle = "Survival", ...)

Arguments

dataf a dataframe with columns ‘size’ and ‘sizeNext’(‘size’ is continuous stage vari-
able at t, ‘sizeNext’ is continuous stage at t+1); facultatively, dataf may include
‘covariate’ and ‘covariateNext’ for a single discrete covariate, indicating val-
ues at t, and at t+1, respectively; these must take values of sequential integers,
starting at ‘1’. For models fitting growth increment, ’incr’ or ’logincr’ may be
directly provided as a column in the dataframe, otherwise they are calculated as
dataf$sizeNext-dataf$size or log(dataf$sizeNext-dataf$size), respectively.

survObj an object of class survObj.

ncuts number of consecutive values for which means of survival and continuous (e.g.
size) stage are taken for the plotting.

makeTitle character that defines title, defaults to "Survival"

... extra arguments to plot (e.g, ylim, etc).

Value

Returns nothing.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

makeSurvObj, picGrow

Examples

dff <- generateData()
sv1 <- makeSurvObj(dff)
picSurv(dff,sv1)

plotGrowthModelComp Plots compared models built with growthModelComp and
survModelComp.

Description

Function plots compared models built with growthModelComp and survModelComp. This can be in-
voked directly from growthModelComp and survModelComp with the argument makePlot = TRUE.

92 plotGrowthModelComp

Usage

plotGrowthModelComp(grObj,summaryTable, dataf, expVars,
testType = "AIC",
plotLegend = TRUE, mainTitle = "", legendPos = "topright",...)

plotSurvModelComp(svObj, summaryTable, dataf, expVars,
testType = "AIC", plotLegend = TRUE, mainTitle = "",ncuts=20,
legendPos = "bottomleft",...)

Arguments

grObj a list with the objects of the class growth object equal to treatN.

svObj a list with the objects of the class survival object equal to treatN.

summaryTable dataframe output from growthModelComp and survModelComp that contains lin-
ear predictor and testType scores (see growthModelComp and survModelComp).

dataf dataframe containing size and sizeNext

expVars vector, list of covariates. Defaults to c("1", "size", "size + size2").

testType character string identifying the metric used to compare models. Can be any
string that uses loglike from the lm or glm object. For example "AIC" or
"BIC". Defaults to "AIC".

plotLegend logical indicated whether a legend is created. If TRUE, positions the legend in
"topleft" for growth models and "bottomleft" for survival models.

mainTitle string to place as the main attribute in plots (if makePlot = TRUE. defaults to
NULL.

ncuts number of consecutive size values for which to take means of size and survival
for plotting.

legendPos position of the legend on the figure ("topright", "bottomleft", ...)

... additional arguments to plot (ylim, col, etc)

Details

Plots multiple growth and survival objects returned from growthModelComp and survModelComp.
See plotGrowthModelComp and plotSurvModelComp for more details.

Value

a plot object.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

growthModelComp,growthModelComp

predictFutureDistribution 93

Examples

Data with size and sizeNext
dff <- generateData()

grModels <- growthModelComp(dff, makePlot = FALSE)

predictFutureDistribution

Predicts continuous (e.g. size) stage distribution in the future giving
current population’s stage distribution.

Description

Function to project a population forwards using an IPM and a starting environment. The IPM may
be structured by continuous (e.g. size) stage alone, or by continuous stage and environment.

Usage

predictFutureDistribution(startingSizes, IPM, n.time.steps, startingEnv = 1)

Arguments

startingSizes vector containing the sizes of the desired starting population.

IPM an IPMmatrix object (P matrix if only interested in survival projections, P ma-
trix+ F matrix otherwise).

n.time.steps a numeric defining the number of time steps for which projection is required.

startingEnv vector defining the desired starting environment, of length one or length start-
ingSizes; ignored if no environmental states are provided; otherwise if the length
is less than startingSizes assumes all individuals start in the same environment,
given by startingEnv[1].

Details

Currently this does not accept IPMs with discrete stages (e.g. seedbank).

Value

n.new.dist0 starting frequency distribution along meshpoints in IPMmatrix.

n.new.dist final frequency distribution.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

94 R0Calc

Examples

Define starting population of interest
startPop <- rnorm(1000,2,1)

Build T and F matrix
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = 1.1*min(dff$size, na.rm = TRUE),
maxSize = 1.1*max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), correction = "constant")
Fmatrix <- makeIPMFmatrix(minSize = 1.1*min(dff$size, na.rm = TRUE),
maxSize = 1.1*max(dff$size, na.rm = TRUE),
fecObj = makeFecObj(dff, fecConstants = data.frame(est=0.7), Transform="log"),
correction="constant")

Make an IPMmatrix object containing P matrix + F matrix
by replacing the P matrix
IPM <- Pmatrix
IPM@.Data <- Pmatrix + Fmatrix

Project population five steps
a5 <- predictFutureDistribution(startingSizes = startPop, IPM = IPM,
n.time.steps = 5, startingEnv = 1)

R0Calc Calculates net reproductive rate (R0) from an IPM.

Description

Estimates lifetime reproductive success from a full IPM, including survival, growth and fecundity.

Usage

R0Calc(Pmatrix, Fmatrix)

Arguments

Pmatrix a matrix (not necessarily of class IPMmatrix).

Fmatrix a matrix (not necessarily of class IPMmatrix).

Value

numeric

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

sampleIPM 95

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p126.

See Also

makeIPMPmatrix,makeIPMFmatrix

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), correction="constant")
Fmatrix <- makeIPMFmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE),
fecObj = makeFecObj(dff,Formula=fec~size), correction="constant")
R0Calc(Pmatrix, Fmatrix)

sampleIPM Builds list of IPMs or P matrices from list growth, survival, fecundity
and discreteTrans objects. It is helpful when building multiple IPMs
for study of parameter uncertainty or stochastic dynamics.

Description

Uses lists of vital rate objects to create a list of IPM or P matrices.

Usage

sampleIPM(growObjList=NULL,survObjList=NULL,fecObjList=NULL,
offspringObjList=NULL, discreteTransList=1,
nBigMatrix,minSize,maxSize,
covariates=FALSE,envMat=NULL,
integrateType="midpoint",correction="none",warn=TRUE)

Arguments

growObjList list of growth objects.

survObjList list of survival objects.

fecObjList list of fecundity objects.
offspringObjList

list of survival objects.

96 sampleIPM

discreteTransList

list of survival objects.

nBigMatrix number of meshpoints.

minSize minimum size.

maxSize maximum size.

covariates level of the covariate.

envMat environmental matrix - defaults to NULL.

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function).

correction correction type, defaults to "none"; option is "constant" which will multiply ev-
ery column of the IPM by a constant sufficient to adjust values to those predicted
for survival at that size.

warn turn warning messages on/off.

Author(s)

Cory Merow, C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans.

See Also

sampleVitalRateObj,sampleIPMOutput,sampleSequentialIPMs

Examples

===
Sample Vital Rate Objects
Parametric bootstrap sample for a growth object
dff <- generateData(type='discrete')
gr1 <- makeGrowthObj(dff)
gr1List=sampleVitalRateObj(gr1,nSamp=9)

Parametric bootstrap sample for a survival object
sv1 <- makeSurvObj(dff)
sv1List=sampleVitalRateObj(sv1,nSamp=9)

Parametric bootstrap sample for a fecundity object
fv1 <- makeFecObj(dff)
fv1List=sampleVitalRateObj(
fv1,nSamp=9,
nDiscreteOffspringTransitions =100,
nOffspring=100)

Parametric bootstrap sample for a discrete transition object
dt1 <- makeDiscreteTrans(dff)
dt1List=sampleVitalRateObj(
dt1,nSamp=9,
nDiscreteGrowthTransitions=100)
===
Make a list of growth/survival (P) matrices (omitting fecundity)

sampleIPM 97

Pmatrixlist=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =NULL,
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
par(mfrow=c(3,3))
lapply(Pmatrixlist,image)

Combine the list of fecundity objects with a single survival
and growth object in a list of IPMs to look at just the impact
of uncertainty in fecundity parameter estimates on population growth rate
IPMlist2=sampleIPM(
growObjList=list(gr1),
survObjList=list(sv1),
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist2,image)

Combine the lists of all vital rate objects in a list of IPMs to
look at the impact of uncertainty in all parameters on
population growth rate
IPMlist3=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist3,image)

===
Summarize the outputs
Get uncertainty in passage time from the list of growth/survival matrices
IPMout1=sampleIPMOutput(PMatrixList=Pmatrixlist)
qLE=apply(IPMout1[['LE']],2,quantile,probs=c(.025,.5,.975))
plot(IPMout1$meshpoints,qLE[2,],type='l',ylim=c(0,max(qLE)))
lines(IPMout1$meshpoints,qLE[1,],type='l',lty=3)
lines(IPMout1$meshpoints,qLE[3,],type='l',lty=3)

Get uncertainty in lambda from the list of IPMs where only fecundity
varied
IPMout2=sampleIPMOutput(IPMList=IPMlist2)
qlambda=quantile(IPMout2[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout2[['lambda']])

Get uncertainty in lambda and passage time from size 5
to a series of size from the list of IPMs where all vital rates varied
IPMout3=sampleIPMOutput(
IPMList=IPMlist3,
passageTimeTargetSize=c(10),

98 sampleIPMOutput

sizeToAgeStartSize=c(5),
sizeToAgeTargetSize=c(6,7,8,9,10))
qlambda=quantile(IPMout3[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout3[['resAge']])

sampleIPMOutput Gets IPM output from a list of P matrices (only survival and size in-
formation) or full IPMs (P matrices + F matrices; the latter include
sexual reproduction information).

Description

Gets synthetic values including life expectancy, passage time, and, if a fecundity matrix is available,
population growth rate (lambda), stable stage distribution, reproductive output, etc. It is helpful
when building multiple IPMs for study of parameter uncertainty or stochastic dynamics.

Usage

sampleIPMOutput(IPMList=NULL,PMatrixList=NULL,passageTimeTargetSize=c(),
sizeToAgeStartSize=c(),sizeToAgeTargetSize=c(),warn=TRUE)

Arguments

IPMList List of survival-size IPM matrices for which summary statistics desired. When
this information is included, population growth rate (lambda), and stable stage
distribution will be provided.

PMatrixList List of survival-growth (P) matrices for which summary statistics desired. When
this information is included, only passage time and sizeToAge calculations will
be provided

passageTimeTargetSize

Target size for passage time. If none is provided defaults to the median of the
IPM meshpoints.

sizeToAgeStartSize

Starting size to determine the expected age which sizeToAgeTargetSize will be
reached. If none is provided defaults to the minimum of the IPM meshpoints.

sizeToAgeTargetSize

Target size to determine the expected age which sizeToAgeTargetSize will be
reached. If none is provided defaults to the IPM meshpoints.

warn turn warning messages on/off.

Value

LE matrix of life expectancies, columns correspond to meshpoints, rows corre-
sponding to each element of the list of P matrices

sampleIPMOutput 99

pTime matrix of passage times to the targetSize from each of the meshpoints (columns)
and for each element in the P matrix list (columns).

lambda vector of population growth rates corresponding to value obtained combining
each element of the list of P matrices with the corresponding element in the list
of F matrices; if no F matrix list is provided, it returns a vector of NAs.

stableStage matrix of stable stage distributions rows corresponding to values obtained. com-
bining each element of the list of Pmatrices with the corresponding element in
the list of Fmatrices; if no Fmatrix list is provided, this is a matrix of NAs.

meshpoints matrix meshpoints.

resSize matrix providing target sizes for size to age estimate (assuming age=1 at sizeS-
tart), of length nsizeToAge space equally between the smallest and largest mesh-
points.

resAge matrix providing time in time-steps to get to resSize, rows corresponding se-
quential elements in the list of P matrices.

Note

This function has replaced the functionality of getIPMoutput and getIPMoutputDirect. Those func-
tions are no longer supported but have been hidden (.getIPMoutput and .getIPMoutputDirect) and
can be accessed for backward compatibility.

Author(s)

Cory Merow, C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans.

References

Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for trees: a new pa-
rameterization method and a validation of model output. Journal of Ecology 98, p345-355.

See Also

sampleIPM, sampleVitalRateObj, sampleSequentialIPMs

Examples

===
Sample Vital Rate Objects
Parametric bootstrap sample for a growth object
dff <- generateData(type='discrete')
gr1 <- makeGrowthObj(dff)
gr1List=sampleVitalRateObj(gr1,nSamp=9)

Parametric bootstrap sample for a survival object
sv1 <- makeSurvObj(dff)
sv1List=sampleVitalRateObj(sv1,nSamp=9)

Parametric bootstrap sample for a fecundity object
fv1 <- makeFecObj(dff)

100 sampleIPMOutput

fv1List=sampleVitalRateObj(
fv1,nSamp=9,
nDiscreteOffspringTransitions =100,
nOffspring=100)

Parametric bootstrap sample for a discrete transition object
dt1 <- makeDiscreteTrans(dff)
dt1List=sampleVitalRateObj(
dt1,nSamp=9,
nDiscreteGrowthTransitions=100)
===
Make a list of growth/survival (P) matrices (omitting fecundity)
Pmatrixlist=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =NULL,
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
par(mfrow=c(3,3))
lapply(Pmatrixlist,image)

Combine the list of fecundity objects with a single survival
and growth object in a list of IPMs to look at just the impact
of uncertainty in fecundity parameter estimates on population growth rate
IPMlist2=sampleIPM(
growObjList=list(gr1),
survObjList=list(sv1),
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist2,image)

Combine the lists of all vital rate objects in a list of IPMs
to look at the impact of uncertainty in all parameters on population
growth rate
IPMlist3=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist3,image)

===
Summarize the outputs
Get uncertainty in passage time from the list of growth/survival matrices
IPMout1=sampleIPMOutput(PMatrixList=Pmatrixlist)
qLE=apply(IPMout1[['LE']],2,quantile,probs=c(.025,.5,.975))
plot(IPMout1$meshpoints,qLE[2,],type='l',ylim=c(0,max(qLE)))
lines(IPMout1$meshpoints,qLE[1,],type='l',lty=3)
lines(IPMout1$meshpoints,qLE[3,],type='l',lty=3)

sampleSequentialIPMs 101

Get uncertainty in lambda from the list of IPMs where only
fecundity varied
IPMout2=sampleIPMOutput(IPMList=IPMlist2)
qlambda=quantile(IPMout2[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout2[['lambda']])

Get uncertainty in lambda and passage time from size 5 to a
series of size from the list of IPMs where all vital rates varied
IPMout3=sampleIPMOutput(
IPMList=IPMlist3,
passageTimeTargetSize=c(10),
sizeToAgeStartSize=c(5),
sizeToAgeTargetSize=c(6,7,8,9,10))
qlambda=quantile(IPMout3[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout3[['resAge']])

sampleSequentialIPMs Makes a list of IPMs where there is a discrete covariate.

Description

Wrapper function to build the IPM corresponding to every level of the discrete covariate, and return
a list of these.

Usage

sampleSequentialIPMs(dataf, nBigMatrix = 10, minSize = -2,
maxSize = 10,

integrateType = "midpoint", correction = "none",
explSurv = surv ~ size + size2 + covariate,
explGrow = sizeNext ~ size + size2 + covariate,
regType = "constantVar",
explFec = fec ~size, Family="gaussian",
Transform = "none",
fecConstants = data.frame(NA))

Arguments

dataf a dataframe with columns ‘size’, ‘sizeNext’, ’surv’, ’fec’, ’covariate’, ’covari-
atel’; and ’age’ indicating which individuals are seedlings for identifying the
mean and variance in seedling size.

nBigMatrix number of bins in size.

minSize minimum size.

maxSize maximum size.

integrateType integration type.

102 sampleVitalRateObj

correction correction for unintentional eviction (individuals move outside the size range of
the IPM). This correction redistributes individuals so that column sums of the
IPM match expected survival for that column.

explSurv Formula and explanatory variables used in the survival model.

explGrow explanatory variables used in the growth model.

regType Formula and regression Type for growth (normal density function, truncated,
etc).

explFec explanatory variables used in the fecundity.

Family a character vector containing the names of the families to be used for the glms,
e.g., binomial, poisson, etc. Again, these must appear in the order defined by the
list of formula

Transform a character vector containing the names of the transforms to be used for the
response variables, e.g., log, sqrt, -1, etc. Again, these must appear in the order
defined by the list of formula

fecConstants data.frame of constant multipliers for the fecundity model.

Value

list of matrices corresponding to covariates, in order.

Note

Formerly makeListIPMs(). makeListIPMs() is no longer supported but has been hidden (.makeLis-
tIPMs()) and can be accessed for backward compatibility.

Author(s)

Cory Merow, C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans.

Examples

dff <- generateData()
IPMlist <- sampleSequentialIPMs(dff, Transform="log")

sampleVitalRateObj Calculates growth objects reflecting distribution of parameters from
lm or glm.

Description

Generate parametric bootstrap samples for vital rate objects (e.g. class growthObj, survObj, fe-
cObj, etc.) from estimated parameters and the variance covariance matrix that defines them using a
multivariate normal distribution. It is helpful when building multiple IPMs for study of parameter
uncertainty or stochastic dynamics.

sampleVitalRateObj 103

Usage

sampleVitalRateObj(
Obj,
nSamp=100,
nDiscreteGrowthTransitions=NULL,
nDiscreteOffspringTransitions = NULL,
nOffspring = NULL)

Arguments

Obj a growth or survival object with a slot named "fit" containing an lm or glm, etc.,
or a fertility object with a slot named "fitFec" for .getListRegObjectsFec,
likewise.

nSamp desired number of samples from the multivariate normal.
nDiscreteGrowthTransitions

number of transitions used to estimate a discreteTrans object. This is used to
estimate the correct variance for sampling the discreteTrans object. It is only
required if a discreteTransObject is provided.

nDiscreteOffspringTransitions

number of transitions used to estimate transition probabilities between discrete
offspring stages (stored in the @offspringSplitter slot of a fecObj). This is used
to estimate the correct variance for the sampling. It is only required if a fecOb-
ject is provided.

nOffspring number of transitions used to the offspring size distribution (stored in the @off-
springRel and @offspringsd slots of a fecObj). This is used to estimate the
correct variance for the sampling. It is only required if a fecObject is provided.

Value

The output is list of the provided vital rate object with different parameter values in each list element,
e.g. a list of growth or survival objects containing an lm or glm; or fertility objects likewise.

Note

This function has replaced the functionality of getListRegObjects and getListRegObjects. Those
functions are no longer supported but have been hidden (.getListRegObjects and .getListRegOb-
jects) and can be accessed for backward compatibility.

Author(s)

Cory Merow, C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans.

See Also

sampleIPM ,sampleIPMOutput,sampleSequentialIPMs

104 sampleVitalRateObj

Examples

===
Sample Vital Rate Objects
Parametric bootstrap sample for a growth object
dff <- generateData(type='discrete')
gr1 <- makeGrowthObj(dff)
gr1List=sampleVitalRateObj(gr1,nSamp=9)

Parametric bootstrap sample for a survival object
sv1 <- makeSurvObj(dff)
sv1List=sampleVitalRateObj(sv1,nSamp=9)

Parametric bootstrap sample for a fecundity object
fv1 <- makeFecObj(dff)
fv1List=sampleVitalRateObj(
fv1,nSamp=9,
nDiscreteOffspringTransitions =100,
nOffspring=100)

Parametric bootstrap sample for a discrete transition object
dt1 <- makeDiscreteTrans(dff)
dt1List=sampleVitalRateObj(
dt1,nSamp=9,
nDiscreteGrowthTransitions=100)
===
Make a list of growth/survival (P) matrices (omitting fecundity)
Pmatrixlist=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =NULL,
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
par(mfrow=c(3,3))
lapply(Pmatrixlist,image)

Combine the list of fecundity objects with a single survival
and growth object in a list of IPMs to look at just the impact
of uncertainty in fecundity parameter estimates on population
growth rate
IPMlist2=sampleIPM(
growObjList=list(gr1),
survObjList=list(sv1),
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist2,image)

Combine the lists of all vital rate objects in a list of IPMs
to look at the impact of uncertainty in all parameters on population
growth rate

sensParams 105

IPMlist3=sampleIPM(
growObjList=gr1List,
survObjList=sv1List,
fecObjList =fv1List,
discreteTransList=list(dt1),
nBigMatrix = 20, minSize = -5, maxSize = 20)
plot results
lapply(IPMlist3,image)

===
Summarize the outputs
Get uncertainty in passage time from the list of growth/survival matrices
IPMout1=sampleIPMOutput(PMatrixList=Pmatrixlist)
qLE=apply(IPMout1[['LE']],2,quantile,probs=c(.025,.5,.975))
plot(IPMout1$meshpoints,qLE[2,],type='l',ylim=c(0,max(qLE)))
lines(IPMout1$meshpoints,qLE[1,],type='l',lty=3)
lines(IPMout1$meshpoints,qLE[3,],type='l',lty=3)

Get uncertainty in lambda from the list of IPMs where only
fecundity varied
IPMout2=sampleIPMOutput(IPMList=IPMlist2)
qlambda=quantile(IPMout2[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout2[['lambda']])

Get uncertainty in lambda and passage time from size 5
#to a series of size from the list of IPMs where all vital rates varied
IPMout3=sampleIPMOutput(
IPMList=IPMlist3,
passageTimeTargetSize=c(10),
sizeToAgeStartSize=c(5),
sizeToAgeTargetSize=c(6,7,8,9,10))
qlambda=quantile(IPMout3[['lambda']],probs=c(.025,.5,.975))
boxplot(IPMout3[['resAge']])

sensParams Estimates sensitivity and elasticity of lambda (or R0, or Life ex-
pectancy of a chosen bin) to parameters underlying an IPM.

Description

Uses perturbation to estimate the sensitivity and elasticity of all the parameters underlying an IPM.

Usage

sensParams(growObj, survObj, fecObj=NULL, clonalObj=NULL,
nBigMatrix, minSize, maxSize,
chosenCov = data.frame(covariate = 1), discreteTrans = 1,
integrateType = "midpoint", correction = "none", preCensusFec = TRUE,
postCensusSurvObjFec = NULL, postCensusGrowObjFec = NULL,
preCensusClonal = TRUE, postCensusSurvObjClonal = NULL,

106 sensParams

postCensusGrowObjClonal = NULL, delta = 1e-04,
response="lambda", chosenBin=1)

Arguments

growObj a growth object.

survObj a survival object.

fecObj a fecundity object (not necessary for life expectancy analysis).

clonalObj a clonality object (not necessary for life expectancy analysis).

nBigMatrix numeric, number of bins of size used in the IPM matrix.

minSize numeric, minimum size used for meshpoints of the IPM matrix.

maxSize numeric, maximum size used for meshpoints of the IPM matrix.

chosenCov level or value of the covariate(s) at which sensitivity estimation is desired

discreteTrans matrix of discrete transitions; or 1 if there is none

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function)

correction correction type, defaults to none. The first option is constant which will mul-
tiply every column of the IPM by a constant sufficient to adjust values to those
predicted for total fertility at that size. The second option is discretizeExtremes
which will place all transitions to sizes smaller than minSize into the smallest
bin, and transitions to sizes larger than maxSize into the largest bin.

preCensusFec logical (TRUE or FALSE), indicating whether the fecundity object represents an
interval between pre-breeding or a post-breeding censusses. Defaults to TRUE
(pre-breeding census), meaning that all reproduction and offspring rates required
for the F matrix are embedded in fecObj. Alternatively, an F matrix based on
post-breeding census (preCensusFec=FALSE) uses postCensusSurvObjFec and
postCensusGrowObjFec, to cover the survival and growth of the parents until
the reproduction event. (not necessary for life expectancy analysis)

postCensusSurvObjFec

survival object representing the survival of the parents until the reproduction
event. If not specified (and preCensusFec = FALSE) it is assumed that all parents
survive until the reproduction event. (not necessary for life expectancy analysis)

postCensusGrowObjFec

growth object representing the growth of surviving parents until the reproduction
event. If not specified (and preCensusFec = FALSE) it is assumed that the par-
ents do not grow until the reproduction event. (not necessary for life expectancy
analysis)

preCensusClonal

logical (TRUE or FALSE), indicating whether the clonality object represents an
interval between pre-breeding or a post-’breeding’ censusses. Defaults to TRUE
(pre-’breeding’ census), meaning that all clonal propagation and offspring rates
required for the C matrix are embedded in clonalObj. Alternatively, an C ma-
trix based on post-’breeding’ census (preCensusClonal=FALSE) uses postCen-
susSurvObjClonal and postCensusGrowObjClonal, to cover the survival and

sensParams 107

growth of the parents until the clonal propagation event. (not necessary for life
expectancy analysis)

postCensusSurvObjClonal

survival object representing the survival of the parents until the clonal propaga-
tion event. If not specified (and preCensusClonal = FALSE) it is assumed that
all parents survive until the clonal propagation event. (not necessary for life
expectancy analysis)

postCensusGrowObjClonal

growth object representing the growth of surviving parents until the clonal prop-
agation event. If not specified (and preCensusClonal = FALSE) it is assumed
that the parents do not grow until the clonal propagation event. (not necessary
for life expectancy analysis)

delta size of the perturbation desired

response whether lambda, R0 or life expectancy of a desired bin (lifeExpect with chosen-
Bin) is required

chosenBin for analysis of life expectancy, which bin in the IPM Life expectancy should be
compared for

Details

The values returned by sensParam are calculated by first calculating lambda for the chosen IPM;
then modifying the focal parameter c by a very small amount, c.new=c*(1+delta) (the default for
delta =1e-4, but users may specify the value that they want). The function then rebuilds the T and F
matrices, and re-calculates lambda. Sensitivity is calculated as:

sens = df(x)/dx = (lam.new-lam)/(c*delta)

i.e., the function estimates the degree to which a small change in the parameter results in a small
change in lambda; and elasticity is calculated as:

elas = sens*c/lam = (lam.new-lam)/(lam*delta)

which corresponds to the proportional change in lambda as an outcome of the proportional change
in the parameter; analagous calculations are used for R0 and life expectancy.

NOTE: in previous versions of IPMpack (pre 2.0), the output of this function was mis-aligned.

Value

sens a vector of sensitivities of lambda or other variable with names corresponding
to parameters.

elas a vector of elasticities to lambda or other variable with names corresponding to
parameters.

Note

Modified following code developed by Rees & Rose 2002 (above).

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

108 sensParams

References

Rees and Rose. 2002. Evolution of flowering strategies in Oenothera glazioviana: an integral
projection model approach. Proceedings of the Royal Society London Seres B 269, p1509-1515.

See Also

sens, elas

Examples

dff <- generateData()

#lambda
res <- sensParams(growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), fecObj = makeFecObj(dff, Transform="log"),
nBigMatrix = 50, minSize = min(dff$size, na.rm=TRUE),
maxSize = max(dff$size, na.rm = TRUE))

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(res$sens,
main = expression("Parameter sensitivity of population growth rate "* lambda),
las = 2, cex.names = 0.5)
barplot(res$elas,
main = expression("Parameter elasticity of population growth rate "* lambda),
las = 2, cex.names = 0.5)

#R0
resR0 <- sensParams(growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), fecObj = makeFecObj(dff, Transform="log"),
nBigMatrix = 50, minSize = min(dff$size, na.rm=TRUE),
maxSize = max(dff$size, na.rm = TRUE), response="R0")

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(resR0$sens,
main = expression("Parameter sensitivity of net reproductive rate R"[0]),
las = 2, cex.names = 0.5)
barplot(resR0$elas,
main = expression("Parameter elasticity of net reproductive rate R"[0]),
las = 2, cex.names = 0.5)

#life expectancy
resLE <- sensParams(growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff), nBigMatrix = 50,
minSize = min(dff$size, na.rm=TRUE), maxSize = max(dff$size, na.rm =
TRUE), chosenBin=1, response="lifeExpect")

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(resLE$sens,
main = expression("Parameter sensitivity of Life Expectancy"*eta[0]),
las = 2, cex.names = 0.5)
barplot(resLE$elas,
main = expression("Parameter elasticity of Life expectancy"*eta[0]),

simulateCarlina 109

las = 2, cex.names = 0.5)

Same as lambda above, but with two fecundity functions
dff$fec2 <- dff$fec>0 #create binomial describing e.g., prob of flowering
dff$fec[dff$fec==0] <- NA #take out zeros to avoid Inf when fit with log
fv1 <- makeFecObj(dff, Formula = c(fec~size+size2,fec2~size),

Transform=c("log","none"),Family = c("gaussian","binomial"))

res <- sensParams(growObj=makeGrowthObj(dff), survObj = makeSurvObj(dff),
fecObj = fv1, nBigMatrix = 50, minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE))

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(res$sens,
main = expression("Parameter sensitivity of population growth rate " *lambda),
las = 2, cex.names = 0.5)
barplot(res$elas,
main = expression("Parameter elasticity of population growth rate " *lambda),
las = 2, cex.names = 0.5)

Same but with two fecundity functions and a constant
fv1@fecConstants[1] <-0.5
res <- sensParams(growObj = makeGrowthObj(dff), survObj = makeSurvObj(dff),
fecObj = fv1, nBigMatrix = 50, minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE))

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(res$sens,
main = expression("Parameter sensitivity of population growth rate " *lambda),
las = 2, cex.names = 0.5)
barplot(res$elas,
main = expression("Parameter elasticity of population growth rate " *lambda),
las = 2, cex.names = 0.5)

Same but with a discrete class
dff <- generateData(type="discrete")
res <- sensParams(growObj = makeGrowthObj(dff), survObj = makeSurvObj(dff),
fecObj = makeFecObj(dff), discreteTrans=makeDiscreteTrans(dff),
nBigMatrix = 50, minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE))

par(mfrow = c(2, 1), bty = "l", pty = "m")
barplot(res$sens,
main = expression("Parameter sensitivity of population growth rate " *lambda),
las = 2, cex.names = 0.5)
barplot(res$elas,
main = expression("Parameter elasticity of population growth rate " *lambda),
las = 2, cex.names = 0.5)

110 simulateCarlina

simulateCarlina Generates random data in the form used by IPMpack based on the
population dynamics of Carlina vulgaris

Description

Simulates growth, survival and fecundity and density dependent seedling establishment to create a
dataframe of the form required by the functions and methods used in IPMpack. Demographic stage
data is only continuous. Note that the number or rows corresponding to each year of the data-frame
does not inform about population size, since rows exist that correspond to offspring appearing in
the subsequent year.

Usage

simulateCarlina(nSamp=200,nYrs=1000,nSampleYrs=15,
m0=-1.37,ms=0.59,
b0=-12.05,bs=3.64,
A=-1,B=2,
ag=1.14,bg=0.74,sig=0.29,
mean.kids=3.16,sd.kids=0.5,
meanYear=c(0,0,0),
matVarYear=matrix(c(1.03,0,0,0,0.037,0.041,0,0.041,0.075),3,3),
varA=0,varB=0,densDep=TRUE,
maxPerYr=1000,maxStoreSeedlingsPerYr=200,
sizes = c())

Arguments

nSamp number of samples desired in the base population, defaults to 2000

nYrs number of years in the simulation, defaults to 1000

nSampleYrs number of years sampled, defaults to 15

m0 intercept survival

ms slope survival

b0 intercept flowering

bs slope flowering

A intercept reproductive allometry seed production

B slope reproductive allometry seed production

ag intercept growth

bg slope growth

sig variance growth

mean.kids mean kid size

sd.kids variance kid size

meanYear mean year effects

matVarYear var-covariance in year effects for survival, growth and offspring size

simulateCarlina 111

varA variance in seed intercept year effects - defaults to zero

varB variance in seed slope year effects - defaults to zero

densDep density dependence in seedling establishment or not?

maxPerYr total number of individuals for which measurements will be transferred to the
subsequent year (population will be resampled with replacement to obtain a pop-
ulation of this size)

maxStoreSeedlingsPerYr

max number of seedling recruits for which data will be stored in every year

sizes starting sizes in the population (optional)

Value

A list including: dataf: A dataframe with headings: - "size": continuous variable, indicating current
size. - "sizeNext" continuous variable, indicating size in the next time step. - "surv": boolean, indi-
cating whether individual survived or not to the next time step. - "covariate": discrete covariate. -
"covariateNext": discrete covariate in the next time step. - "fec": continuous variable, indicating fe-
cundity. - nSeedlings: number seedlings corresponding to that year - m.year: intercept of mortality
for that year - cg.year: intercept of growth for that year - b.year: intercept of offspring size for that
year - offspringNext: where the row corresponds to offspring, this takes the value offspringNexxt -
year: year of the sample

list.par: - a list of all the other parameters matVarYear - variance covariance matrix for demo-
graphic functions trueGrow - stochastic growth rate, log lambda s meantrueGrow - mean of lambda
t vartrueGrow - variance of log lambda t

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

generateData

Examples

#Uncomment to run
#dff <- simulateCarlina(nSamp=1000)
#head(dff$dataf)

112 sizeToAge

sizeToAge Estimates size/stage to age relationships

Description

Uses a P matrix and a starting continuous stage value to estimate time to a range of target sizes,
from which a size to age pattern can be determined.

Usage

sizeToAge(Pmatrix, startingSize, targetSize)

Arguments

Pmatrix object of class IPMmatrix describing growth survival transitions.

startingSize numeric, size at age 1, or size from which age-size relationship is desired.

targetSize vector of size(s) for which first passage time is required.

Value

timeInYears Time taken to reach target sizes in unit of the time step of the model.

targetSize Vector of target sizes.

startingSize Size at age 1.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p110-132.

Metcalf, Horvitz, Tuljapurkar & Clark. 2009 A time to grow and a time to die: a new way to analyze
the dynamics of size, light, age and death of tropical trees. Ecology 90, p2766-2778.

Cochran & Ellner. 1992. Simple methods for calculating age-based life history parameters for
stage-structured populations. Ecological Monographs 62, p345-364.

See for bias in this estimation where variance in growth is small relative to the size range: Zuidema,
Jongejans, Chien, During & Schieving. 2010. Integral Projection Models for trees: a new parame-
terization method and a validation of model output. Journal of Ecology 98, p345-355.

See Also

passageTime

stochGrowthRateManyCov 113

Examples

dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
targetSize <- 8
startingSize <- 0
sizeToAge(Pmatrix, startingSize, targetSize)

stochGrowthRateManyCov

Estimates stochastic population growth rates (lambda_s) or invasion
rate with many varying covariates. Alternatively, tracks population
structure in a stochastic environment if trackStruct is TRUE.

Description

Iterates a population vector through a time series of covariates according to growth, survival and
fecundity objects, and calculates the stochastic population rate of increase if no density-dependence
is specified, or the rate of invasion if density dependence is specified.

Usage

stochGrowthRateManyCov(covariate, nRunIn, tMax,
growthObj, survObj, fecObj, nBigMatrix, minSize, maxSize,
nMicrosites,integrateType = "midpoint", correction = "none",
trackStruct=FALSE, plot=FALSE, ...)

Arguments

covariate matrix with tMax rows, and as many columns as there are relevant covariates.

nRunIn numeric, number of initial samples to discard.

tMax numeric, total number of time-steps to run (same as ncol(covariate)).

growthObj a growth object, defined to correspond to covariate definition (indexing used to
make the growth object must match up).

survObj a survival object, defined to correspond to covariate definition in covariate.

fecObj a fecundity object, defined to correspond to covariate definition in covariate.

nBigMatrix numeric, number of size bins in the IPM.

minSize numeric, minimum size in the IPM.

maxSize numeric, maximum size in the IPM.

nMicrosites vector, if sum(nMicrosites)> 0 then density dependence is assumed to operate
on seedling establishment, and if length(nMicrosites)>1, then the number of mi-
crosites available for establishment at time t is nMicrosites[min(t,length(nMicrosites))].

114 stochGrowthRateManyCov

integrateType integration type, defaults to "midpoint" (which uses probability density func-
tion); other option is "cumul" (which uses the cumulative density function).

correction correction type, defaults to "none"; option is "constant" which will multiply ev-
ery column of the IPM by a constant sufficient to adjust values to those predicted
for survival at that continuous stage value.

trackStruct Boolean indicating whether you want to track the population structure (beyond
simply estimating the growth rate)

plot Boolean indicating whether a plot of the population structure is desired.

... extra arguments relating to plotting if trackStruct and plot are TRUE.

Details

Forms of density dependence beyond density dependence in seedling establishment not yet defined.

Value

Rt If trackStruct is TRUE, numeric, converging on log lambda_s, or invasion rate
(density dependence) for large enough tMax, and if covariate distribution is sta-
tionary.

rc matrix of the numbers of individuals in each size and seed class (row) over time
(columns).

IPM.here IPM constructed corresponding to pop structure and covariates at tMax.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Ellner & Rees. 2007. Stochastic stable population growth in integral projection models: theory and
application. Journal of Mathematical Biology 54, p227-256.

Rees & Ellner. 2009. Integral projection models for populations in temporally varying environ-
ments. Ecological Monographs 79, p575-594.

See Also

stochGrowthRateSampleList,

Examples

NOT RUN - this is hashed out because compiles too slowly

Generate relevant data, build objects
#dff <- generateData(type="stochastic")
#print(head(dff))
#gr1 <- makeGrowthObj(dff, Formula = sizeNext~size+size2+covariate1)

stochGrowthRateSampleList 115

#sv1 <- makeSurvObj(dff, Formula = surv~size+size2+covariate2)
#fv1 <- makeFecObj(dff, Formula = fec~size+size2,Transform="log")

Generate time series of covariates for which population growth rate
#is required. Here set to be seasonal environment.
#Names of covariates must be same as in dff
#tVals <- seq(1,100,by = 1/12)
#covTest <- (1 + 0.5*sin(2*pi*tVals))
#covMatTest <- data.frame(covariate1 = rnorm(length(covTest),covTest,0.5) - 1,
#covariate2 = rnorm(length(covTest), covTest,0.5) - 1,
#covariate3 = rnorm(length(covTest), covTest,0.5) - 1, row.names = NULL)

Calculate

#r <- stochGrowthRateManyCov(covariate = covMatTest, nRunIn = 5*10,
#tMax = length(tVals), growthObj = gr1, survObj = sv1, fecObj = fv1,
#nBigMatrix = 100,
#minSize = 1.1*min(dff$size, na.rm = TRUE),
#maxSize = 1.1*max(dff$size, na.rm = TRUE), nMicrosites = 0)

#r

Track population strucuture instead
#st <- stochGrowthRateManyCov(covariate = covMatTest, nRunIn = 5*10,
#tMax = length(tVals), growthObj = gr1, survObj = sv1, fecObj = fv1,
#nBigMatrix = 100,
#minSize = 1.1*min(dff$size, na.rm = TRUE),
#maxSize = 1.1*max(dff$size, na.rm = TRUE), nMicrosites = 0,
#trackStruct=TRUE,plot=TRUE)

stochGrowthRateSampleList

Estimating the stochastic population growth rate (lambda_s) or inva-
sion rat.

Description

Estimates the stochastic growth rate (lambda_s) by iteration; operates by sampling a list of IPMs.
Note that the function stoch.growth.rate in the package popbio does this more efficiently and with
more useful output; but may fail for large bin numbers. If densDept is TRUE, estimates the stochas-
tic invasion rate in the presence of density dependence in seedling establishment by iteration; op-
erates by sampling a list of IPMs and recalculating the probability of seed establishment at each
time-step.

Usage

stochGrowthRateSampleList(nRunIn,tMax,listIPMmatrix=NULL,
listPmatrix=NULL, listFmatrix=NULL,seedList=NULL,
densDep=FALSE)

116 stochPassageTime

Arguments

nRunIn numeric, the size of the burnin,

tMax numeric, the total samples desired.

listIPMmatrix a list of IPMmatrix objects corresponding to possible states of the environment.

listPmatrix a list of IPM P matrices corresponding to possible states of the environment.

listFmatrix a list of IPM F matrices corresponding to possible states of the environment.

seedList numeric, a vector of the number of successful recruit corresponding to possible
states of the environment.

densDep Boolean indicating whether density dependence in seedling establishment should
be implemented

Value

a numeric converging on high enough log lambda_s for sufficient tMax; note that if the population
size declines to zero, this may return NAs because of logging.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p452-502.

See Also

sampleSequentialIPMs

Examples

dff <- generateData()
IPMlist <- sampleSequentialIPMs(dataf = dff, nBigMatrix = 10, minSize = -5,
maxSize = 15,fecConstants=data.frame(1e6), correction="constant")
stochGrowthRateSampleList(listIPMmatrix = IPMlist,nRunIn = 100, tMax = 5000)

stochPassageTime Estimates passage time in a discretely varying environment.

Description

Estimates the time in units of the chosen time steps (see convertIncrement()) that it will take to
reach a chosen continuous stage value for the first time conditional on surviving from each of the
meshpoints of the IPM for each starting environment.

stochPassageTime 117

Usage

stochPassageTime(chosenSize, IPMmatrix, envMatrix)

Arguments

chosenSize numeric, target size for which passage time is desired.

IPMmatrix object of class IPMmatrix describing survival related transitions only.

envMatrix object of class envMatrix describing transitions between discrete environmental
states.

Details

Passage time for values exactly equal to the target size are one year, because of how the conditionals
are framed. Values slightly less than the target size may on average take longer due to variance in
growth, mortality, leading to discontinuities in the pattern of passage time over age. Passage time
from values > than the chosenSize should be ignored (space to the right of the red vertical line in
example below).

Value

vector containing passage times across size in the first discrete environmental state, then in the
second, etc.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer.

Metcalf, Horvitz, Tuljapurkar, Clark. 2009. A time to grow and a time to die: a new way to analyze
the dynamics of size, light, age and death of tropical trees. Ecology 90, p2766-2778.

For bias in this estimation where variance in growth is small relative to the size range: Zuidema,
Jongejans, Chien, During & Schieving. 2010. Integral Projection Models for trees: a new parame-
terization method and a validation of model output. Journal of Ecology 98, p345-355.

See Also

passageTime

Examples

dff <- generateData()
Pmatrix <- makeCompoundPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize=max(dff$size, na.rm = TRUE),
growObj = makeGrowthObj(dff, Formula=sizeNext~size+covariate),
survObj = makeSurvObj(dff, Formula = surv~size+covariate),
envMatrix = makeEnvObj(dff), correction="constant")

118 surv

targetSize <- 8

passage <- stochPassageTime(targetSize, Pmatrix, makeEnvObj(dff))

plot(Pmatrix@meshpoints,passage[1:length(Pmatrix@meshpoints)],
ylab = "Passage time", xlab = "Continuous (e.g. size) stage",
type = "l", col = "dark gray",
xlim=c(Pmatrix@meshpoints[1],targetSize),
ylim = c(0, max(passage)))
abline(v = targetSize, col = "red")
points(Pmatrix@meshpoints,
passage[(length(Pmatrix@meshpoints)+1):(2*length(Pmatrix@meshpoints))],
type="l",col="green")

surv Survival

Description

Predicts the probability of surviving at a given size given a survival object.

Usage

surv(size, cov, survObj)

Arguments

size a numeric vector of current sizes.

cov a data-frame with one row containing all covariates.

survObj a survObj.

Value

a vector of length size with values between 0 and 1.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

See Also

growth, growSurv, surv-methods

Examples

dff <- generateData()
sv1 <- makeSurvObj(dff)
surv(1:50, data.frame(cov=1), sv1)

surv-methods 119

surv-methods ~~ Methods for Function surv ~~

Description

~~ Methods for function surv ~~

Methods

signature(size = "numeric", cov = "data.frame", survObj = "survObj") Methods to pre-
dict probability of survival given a linear predictor based on various transforms of size and
covariates defined in cov.

signature(size = "numeric", cov = "data.frame", survObj = "survObjOverDisp") Methods
to predict probability of survival given a linear predictor based on various transforms of size
and acovariate, where over-dispersion has been fitted, using a correction.

survivorship Estimates survivorship between two time censuses.

Description

Calculates the fraction of the cohort surviving across age for a chosen starting continuous stage
value.

Usage

survivorship(IPMmatrix, loc, maxAge)

Arguments

IPMmatrix an IPMmatrix object describing growth and survival transitions across stage (e.g.
size) and environment.

loc a starting size location in the IPM matrix for age 1 (i.e., either the index of the
desired size in the meshpoints, or, if there are discrete stages, the index + the
number of discrete stages; if this is not an integer, then it will be assumed that
the rounded version is desired)

maxAge the maximum age up to which survivorship is desired for or possible.

Value

surv.curv vector of length maxAge providing survivorship at each age from 1 to maxAge.

stageAgeSurv matrix of dimensions nBigMatrix*maxAge providing the population structure
at every age for a cohort starting with an individual of size size1.

mortality vector of length maxAge providing mortality at each age from 1 to maxAge.

120 survObj-class

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Tuljapurkar & Horvitz. 2006. From stage to age in variable environments. Life expectancy and
survivorship. Ecology 87, p1497-1509.

Examples

For only continuous stages (e.g. size)
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
su <- survivorship(Pmatrix, 1, 300)
plot(su$surv.curv, type = "l", col = "dark gray", ylab = "survivorship",
xlab= "Continuous (e.g. size) stage", ylim = c(0,1))

For continuous (e.g. size) and discrete (e.g. seedbank) stages
Pmatrix <- makeCompoundPmatrix(minSize = min(dff$size,na.rm = TRUE),
maxSize = max(dff$size,na.rm = TRUE), envMatrix = makeEnvObj(dff),
growObj = makeGrowthObj(dff, Formula = sizeNext~size+size2+covariate),
survObj = makeSurvObj(dff, Formula = surv~size+size2+covariate),
discreteTrans = 1)
su <- survivorship(Pmatrix,1,300)

survObj-class Class "survObj"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("survObj", ...).

Slots

fit: Object of class "glm" ~~

Methods

surv signature(size = "numeric", cov = "numeric", survObj = "survObj"): ...

survObjOverDisp-class 121

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez & Eelke Jongejans

Examples

showClass("survObj")

survObjOverDisp-class Class "survObjOverDisp"

Description

A class object description

Objects from the Class

Objects can be created by calls of the form new("survObjOverDisp", ...).

Slots

fit: Object of class "glm" ~~

Methods

surv signature(size = "numeric", cov = "numeric", survObj = "survObjOverDisp"):
...

Examples

showClass("survObjOverDisp")

timeToSize Projects how long it takes to get from a starting distribution to a target
continuous stage value.

Description

Provided with a starting vector reflecting starting individual sizes, this function projects forward
via the provided IPM until a defined proportion of the population has reach the chosen endSize.
Only works for single environment or compound matrices (not time-varying covariates apart from
a single discrete one).

Usage

timeToSize(startingSizes, IPM, endSize, startingEnv = 1, maxT = 100, propReach = 0.01)

122 timeToSize

Arguments

startingSizes vector of starting sizes reflecting sizes of individuals in the starting population
(in any order).

IPM the IPM Pmatrix.

endSize the end size.

startingEnv vector of starting env, same length as startingSizes, or length = 1 if compound
matrices are not being used.

maxT the max number of time steps tested.

propReach the proportion of the starting pop that have to be > than the endSize for it to
count.

Details

Plots and returned values of survivorship from preliminary runs will give a notion of how low this
has to be.

Value

ts.dist the time-series of size distribution

time.reach the time for n.reach to be at sizes > endSize

survivorship survivorship over the course of the time elapsed for that pop

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer.

Examples

#note that with the "fake data" essentially either takes
#forever or is immediate...
dff <- generateData()
startSizes <- rnorm(1000, 2.5, 1)
Pmatrix <- makeIPMPmatrix(minSize = 1.2*min(dff$size, na.rm=TRUE),
maxSize = 1.2*max(dff$size, na.rm=TRUE),
growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))

rc <- timeToSize(startingSizes = startSizes, IPM = Pmatrix, endSize = 6,
startingEnv = 1, maxT = 1000, propReach = 0.001)

names(rc)

varLifeExpect 123

par(mfrow=c(2,2), bty = "l")
Make picture with lines for distribution of
population on different time points
matplot(Pmatrix@meshpoints, rc$ts.dist, type = "l", xlab = "size",
ylab = "Number of individuals")

Examine time elapsed for propReach to attain the chosen endSize
rc$time.reach

Plot out the survivorship
plot(rc$survivorship, type = "l", #log = "y",
xlab = "time step", ylab = "Probability original population survival",
ylim = c(0,1), col = "gray")

varLifeExpect Calculates variation in life expectancy in a discretely stochastic envi-
ronment.

Description

Provided a P matrix, defining survival transitions across size, this function provides a vector with
variance in life expectancy in units of the time-step used, for each of the size bins.

Usage

varLifeExpect(IPMmatrix)

Arguments

IPMmatrix an IPMmatrix object defining survival transitions.

Value

a vector of variance in life expectancies each corresponding to Pmatrix@meshpoints.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p110-132.

Cochran & Ellner. 1995. Simple methods for calculating age-based life history parameters for
stage-structured populations. Ecological Monographs 62, p345-364.

Tuljapurkar & Horvitz, 2006. From stage to age in variable environments. Life expectancy and
survivorship. Ecology 87, p1497-1509.

124 varPassageTime

See Also

meanLifeExpect, makeIPMPmatrix

Examples

With a single continuous (e.g. size) stage
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize = max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
vle <- varLifeExpect(Pmatrix)

plot(Pmatrix@meshpoints, vle, ylab = "Variation life expectancy",
xlab = "Continuous (e.g. size) stage", type = "l", ylim = c(0,max(vle)))

varPassageTime Estimates variation in passage time.

Description

Function to take a P matrix (either compound or not) and estimate variance in passage time to a
chosen continuous stage value.

Usage

varPassageTime(chosenSize, IPMmatrix)

Arguments

chosenSize The continuous stage value of interest.

IPMmatrix The Pmatrix (compound or not).

Details

Note how variation in passage time for values exactly equal to the chosen size (targetSize) are low,
because of way the conditionals are framed. Passage time from values > than targetSize should
be ignored (space to the right of the red vertical line in example below), unless dealing with an
organism that is able to display retrogression.

Value

Numeric vector corresponding to variance in passage time from each of the meshpoints in the IPM
(so both size, and if a compound matrix, size from different environments).

wrapHossfeld 125

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Caswell, 2001. Matrix population models: analysis, construction and interpretation. 2nd ed. Sin-
auer. p119.

Metcalf, Horvitz, Tuljapurkar & Clark. 2009. A time to grow and a time to die: a new way to
analyze the dynamics of size, light, age and death of tropical trees. Ecology 90, p2766-2778.

For bias in this estimation where variance in growth is small relative to the size range: Zuidema,
Jongejans, Chien, During & Schieving. 2010. Integral Projection Models for trees: a new parame-
terization method and a validation of model output. Journal of Ecology 98, p345-355.

For species with shrinkage: Salguero-Gomez & Casper. 2010. Keeping shrinkage in the demo-
graphic loop. Journal of Ecology 98, p313-323.

See Also

passageTime, makeIPMPmatrix

Examples

With continuous (e.g. size) stage
dff <- generateData()
Pmatrix <- makeIPMPmatrix(minSize = min(dff$size, na.rm = TRUE),
maxSize <- max(dff$size, na.rm = TRUE), growObj = makeGrowthObj(dff),
survObj = makeSurvObj(dff))
targetSize <- 8
vP <- varPassageTime(targetSize, Pmatrix)

plot(Pmatrix@meshpoints, vP, type = "l", xlab="Continuous (e.g. Size) stage",
xlim=c(Pmatrix@meshpoints[1],targetSize),
ylab = "Variance in passage time", col = "dark gray")
abline(v = targetSize, col = "red")

not sure variance works with this....

wrapHossfeld Fitting Hossfeld growth function.

Description

Function to define deviance of a Hossfeld function for use with optim to generate a Hossfeld growth
object.

126 wrapHossfeld

Usage

wrapHossfeld(par, dataf)

Arguments

par vector of length three.

dataf dataframe with columns size and incr.

Author(s)

C. Jessica E. Metcalf, Sean M. McMahon, Roberto Salguero-Gomez, Eelke Jongejans & Cory
Merow.

References

Zuidema, Jongejans, Chien, During & Schieving. Integral projection models for trees: a new pa-
rameterization method and a validation of model output. Journal of Ecology 98, p345-355.

See Also

Hossfeld

Examples

Simulate data and create a column for growth increment
dff <- generateData()
dff$incr <- dff$sizeNext - dff$size

Current sum of squares
wrapHossfeld(c(1, 1, 1), dff)

Use optim to get best parameters values [not run]
tmp <- optim(c(1, 1, 1), wrapHossfeld, dataf = dff, method = "Nelder-Mead")

Index

∗Topic \textasciitilde\textasciitilde
other possible keyword(s)
\textasciitilde\textasciitilde

growth-methods, 33
growthCum-methods, 36
surv-methods, 119

∗Topic \textasciitildekwd1
meanLifeExpect, 86
sampleSequentialIPMs, 101
timeToSize, 121

∗Topic \textasciitildekwd2
sampleSequentialIPMs, 101
timeToSize, 121

∗Topic classes
discreteTrans-class, 24
discreteTransInteger-class, 25
envMatrix-class, 27
fecObj-class, 28
fecObjInteger-class, 29
growthObj-class, 38
growthObjDeclineVar-class, 39
growthObjHossfeld-class, 39
growthObjIncr-class, 40
growthObjIncrDeclineVar-class, 41
growthObjLogIncr-class, 42
growthObjLogIncrDeclineVar-class,

42
growthObjNegBin-class, 43
growthObjPois-class, 44
growthObjTruncIncr-class, 44
IPMmatrix-class, 46
survObj-class, 120
survObjOverDisp-class, 121

∗Topic datasets
dataIPMpackCryptantha, 10
dataIPMpackHypericum, 11
dataIPMpackHypericumCov, 15
dataIPMpackSilwood, 17
dataIPMpackSuccisa, 18

dataIPMpackSuccisa2, 20
∗Topic methods

growth-methods, 33
growthCum-methods, 36
surv-methods, 119

∗Topic package
IPMpack-package, 3

.getIPMoutput (sampleIPMOutput), 98

.getIPMoutputDirect (sampleIPMOutput),
98

.getListRegObjects
(sampleVitalRateObj), 102

.getListRegObjectsFec
(sampleVitalRateObj), 102

.makeListIPMs (sampleSequentialIPMs),
101

.makeListPmatrix (sampleIPM), 95

addPdfGrowthPic, 4
array, 27, 47

coerceGrowthObj, 5
coerceSurvObj (coerceGrowthObj), 5
convergeIPM, 7, 23
convertIncrement, 9
createCompoundCmatrix

(makeCompoundCmatrix), 52
createCompoundFmatrix

(makeCompoundFmatrix), 53
createCompoundPmatrix

(makeCompoundPmatrix), 56
createIntegerFmatrix

(makeIntegerFmatrix), 72
createIntegerPmatrix

(makeIntegerFmatrix), 72
createIPMCmatrix (makeIPMCmatrix), 75
createIPMFmatrix (makeIPMFmatrix), 77
createIPMPmatrix (makeIPMPmatrix), 80

dataIPMpackCryptantha, 10

127

128 INDEX

dataIPMpackHypericum, 11
dataIPMpackHypericumCov, 15
dataIPMpackSilwood, 17
dataIPMpackSuccisa, 18
dataIPMpackSuccisa2, 20
diagnosticsPmatrix, 8, 21, 80, 82
discreteTrans-class, 24
discreteTransInteger-class, 25

elas, 26, 108
envMatrix-class, 27

fecObj-class, 28
fecObjInteger-class, 29
formula, 64, 67

generateData, 30, 111
growSurv, 31, 33, 118
growth, 32, 32, 118
growth,numeric,numeric,data.frame,growthObj-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjDeclineVar-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjHossfeld-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjIncr-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjIncrDeclineVar-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjLogIncr-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjLogIncrDeclineVar-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjNegBin-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjPois-method

(growth-methods), 33
growth,numeric,numeric,data.frame,growthObjTruncIncr-method

(growth-methods), 33
growth-methods, 33
growthCum, 35
growthCum,numeric,numeric,data.frame,growthObj-method

(growthCum-methods), 36
growthCum,numeric,numeric,data.frame,growthObjDeclineVar-method

(growthCum-methods), 36
growthCum,numeric,numeric,data.frame,growthObjHossfeld-method

(growthCum-methods), 36
growthCum,numeric,numeric,data.frame,growthObjIncr-method

(growthCum-methods), 36

growthCum,numeric,numeric,data.frame,growthObjIncrDeclineVar-method
(growthCum-methods), 36

growthCum,numeric,numeric,data.frame,growthObjLogIncr-method
(growthCum-methods), 36

growthCum,numeric,numeric,data.frame,growthObjLogIncrDeclineVar-method
(growthCum-methods), 36

growthCum,numeric,numeric,data.frame,growthObjTruncIncr-method
(growthCum-methods), 36

growthCum-methods, 36
growthModelComp, 36, 92
growthObj-class, 38
growthObjDeclineVar-class, 39
growthObjHossfeld-class, 39
growthObjIncr-class, 40
growthObjIncrDeclineVar-class, 41
growthObjLogIncr-class, 42
growthObjLogIncrDeclineVar-class, 42
growthObjNegBin-class, 43
growthObjPois-class, 44
growthObjTruncIncr-class, 44

Hossfeld, 45, 126

invLogit, 46
IPMmatrix-class, 46
IPMpack (IPMpack-package), 3
IPMpack-package, 3
IPMpackNews, 47

largeMatrixCalc, 48

makeClonalObj, 49
makeClonalObjInteger

(makeFecObjInteger), 66
makeCompoundCmatrix, 52
makeCompoundFmatrix, 53, 57
makeCompoundPmatrix, 53, 55, 56
makeDiscreteTrans, 58, 62, 80, 82
makeDiscreteTransInteger, 60, 73
makeEnvObj, 62
makeFecObj, 63, 63, 69, 71, 84
makeFecObjInteger, 66, 73
makeGrowthObj, 5, 6, 38, 51, 66, 69, 69, 84, 90
makegrowthObjHossfeld, 71
makeIntegerFmatrix, 72
makeIntegerPmatrix

(makeIntegerFmatrix), 72
makeIPMCmatrix, 53, 75, 78, 80
makeIPMFmatrix, 55, 63, 76, 77, 80, 82, 95

INDEX 129

makeIPMmatrix, 76, 78, 79, 82
makeIPMPmatrix, 23, 57, 59, 62, 63, 76, 78,

80, 80, 87, 95, 124, 125
makeOffspringObj, 66, 83
makeSurvObj, 5, 6, 38, 51, 63, 66, 69, 71, 84,

85, 91
matrix, 27, 47
meanLifeExpect, 86, 89, 124

passageTime, 88, 112, 117, 125
picGrow, 89, 91
picSurv, 85, 90, 90
plotGrowthModelComp, 5, 38, 91
plotSurvModelComp, 5, 38
plotSurvModelComp

(plotGrowthModelComp), 91
predictFutureDistribution, 93

R0Calc, 94

sampleIPM, 95, 99, 103
sampleIPMOutput, 96, 98, 103
sampleSequentialIPMs, 96, 99, 101, 103,

116
sampleVitalRateObj, 96, 99, 102
sens, 26, 108
sens (elas), 26
sensParams, 26, 105
simulateCarlina, 30, 109
sizeToAge, 112
stochGrowthRateManyCov, 113
stochGrowthRateSampleList, 114, 115
stochPassageTime, 116
stochPassageTime,numeric,IPMmatrix,envMatrix-method

(envMatrix-class), 27
structure, 27, 47
surv, 32, 33, 118
surv,numeric,data.frame,survObj-method

(surv-methods), 119
surv,numeric,data.frame,survObjOverDisp-method

(surv-methods), 119
surv,numeric,numeric,survObjOverDisp-method

(survObjOverDisp-class), 121
surv-methods, 119
survivorship, 119
survModelComp (growthModelComp), 36
survObj-class, 120
survObjOverDisp-class, 121

timeToSize, 121

varLifeExpect, 123
varPassageTime, 124
vector, 27, 47

wrapHossfeld, 125

	IPMpack-package
	addPdfGrowthPic
	coerceGrowthObj
	convergeIPM
	convertIncrement
	dataIPMpackCryptantha
	dataIPMpackHypericum
	dataIPMpackHypericumCov
	dataIPMpackSilwood
	dataIPMpackSuccisa
	dataIPMpackSuccisa2
	diagnosticsPmatrix
	discreteTrans-class
	discreteTransInteger-class
	elas
	envMatrix-class
	fecObj-class
	fecObjInteger-class
	generateData
	growSurv
	growth
	growth-methods
	growthCum
	growthCum-methods
	growthModelComp
	growthObj-class
	growthObjDeclineVar-class
	growthObjHossfeld-class
	growthObjIncr-class
	growthObjIncrDeclineVar-class
	growthObjLogIncr-class
	growthObjLogIncrDeclineVar-class
	growthObjNegBin-class
	growthObjPois-class
	growthObjTruncIncr-class
	Hossfeld
	invLogit
	IPMmatrix-class
	IPMpackNews
	largeMatrixCalc
	makeClonalObj
	makeCompoundCmatrix
	makeCompoundFmatrix
	makeCompoundPmatrix
	makeDiscreteTrans
	makeDiscreteTransInteger
	makeEnvObj
	makeFecObj
	makeFecObjInteger
	makeGrowthObj
	makegrowthObjHossfeld
	makeIntegerFmatrix
	makeIPMCmatrix
	makeIPMFmatrix
	makeIPMmatrix
	makeIPMPmatrix
	makeOffspringObj
	makeSurvObj
	meanLifeExpect
	passageTime
	picGrow
	picSurv
	plotGrowthModelComp
	predictFutureDistribution
	R0Calc
	sampleIPM
	sampleIPMOutput
	sampleSequentialIPMs
	sampleVitalRateObj
	sensParams
	simulateCarlina
	sizeToAge
	stochGrowthRateManyCov
	stochGrowthRateSampleList
	stochPassageTime
	surv
	surv-methods
	survivorship
	survObj-class
	survObjOverDisp-class
	timeToSize
	varLifeExpect
	varPassageTime
	wrapHossfeld
	Index

