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Abstract

This is a vignette for the R package CARBayesST version 3.0.2, and is an updated ver-
sion of a paper in the Journal of Statistical Software in 2018 Volume 84 Issue 9 by the same
author. The package concerns the modelling of spatial data relating to non-overlapping
areal units, and a large suite of modelling tools have been developed for analysing these
data. Many utilise conditional autoregressive (CAR) priors to capture the spatial auto-
correlation inherent in these data, and software such as CARBayes and R-INLA have
been developed to make these models easily accessible to others. Such spatial data are
typically available for multiple time periods, and the development of methodology for
capturing temporally changing spatial dynamics is the focus of much current research. A
sizeable proportion of this literature has focused on extending CAR, priors to the spatio-
temporal domain, and this article presents the R package CARBayesST, which is the
first dedicated software for spatio-temporal areal unit modelling with conditional autore-
gressive priors. The software can fit a range of models focused on different aspects of
space-time modelling, including estimation of overall space and time trends, and the iden-
tification of clusters of areal units that exhibit elevated values. This vignette outlines the
class of models that the software can implement, before applying them to simulated and
two real examples, the latter in the fields of epidemiology and housing market analysis.
Version 3.0.2 has a number of changes including;:

1. The use of data augmentation to account for missing values in the respone variable.
2. A new model for clustering areal units by their temporal trends.

3. An updated vignette using the leaflet package for mapping.

Then version 3.0.2 has fixed a bug with the print function.

Keywords: Bayesian inference, conditional autoregressive priors, R package, spatio-temporal
areal unit modelling.

1. Introduction

Areal unit data are a type of spatial data where the observations relate to a set of K contiguous
but non-overlapping areal units, such as electoral wards or census tracts. Each observation
relates to an entire areal unit, and thus is typically a summary measure such as an average,
proportion, or total, for the entire unit. Examples include the proportion of people who are
Catholic in lower super output areas in Northern Ireland (Lee, Minton, and Pryce 2015), the
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average score on SAT college entrance exams across US states (Wall 2004), and the total
number of cases of chronic obstructive pulmonary disease from populations living in counties
in Georgia, USA (Choi and Lawson 2011). Areal unit data such as these have become increas-
ingly available in recent times, due to the creation of databases such as Scottish Statistics
(http://statistics.gov.scot/), and cancer registries such as the Surveillance Epidemiol-
ogy and End Results programme (http://seer.cancer.gov).

These databases provide data on a set of K areal units for N consecutive time periods,
yielding a rectangular array of K x N spatio-temporal observations. The motivations for
modelling these data are varied, and include estimating the effect of a risk factor on a re-
sponse (see Wakefield 2007 and Lee, Ferguson, and Mitchell 2009), identifying clusters of
contiguous areal units that exhibit an elevated risk of disease compared with neighbouring
areas (see Charras-Garrido, Abrial, and de Goer 2012 and Anderson, Lee, and Dean 2014),
and quantifying the level of segregation in a city between two or more different groups (see
Lee et al. 2015). As a result different space-time structures have been proposed for modelling
spatio-temporal data, which depend on the goals of the analysis.

However, a common challenge when modelling these data is that of spatio-temporal autocor-
relation, namely that observations from geographically close areal units and temporally close
time periods tend to have more similar values than units and time periods that are further
apart. Temporal autocorrelation occurs because the data relate to largely the same popu-
lations in consecutive time periods, while spatial autocorrelation can arise for a number of
reasons. The first is unmeasured confounding, which occurs when a spatially patterned risk
factor for the response variable is not included in a regression model, and hence its omission
induces spatial structure into the residuals. Other causes of spatial autocorrelation include
neighbourhood effects, where the behaviours of individuals in an areal unit are influenced
by individuals in adjacent units, and grouping effects, where groups of people with similar
behaviours choose to live close together.

Predominantly, a Bayesian approach is taken to modelling these data, where the spatio-
temporal autocorrelation is modelled via sets of autocorrelated random effects. Conditional
autoregressive (CAR, Besag, York, and Mollié 1991) priors and spatio-temporal extensions
thereof are typically assigned to these random effects to capture this autocorrelation, which
are special cases of a Gaussian Markov Random Field (GMRF). A range of models have
been proposed with different space-time structures, which can be used to answer different
questions of interest about the data. For example, Knorr-Held (2000) proposed an ANOVA
style decomposition of the data into overall spatial and temporal trends (main effects) and a
space-time interaction, which allows common patterns, such as the region wide average tem-
poral trend, to be estimated. In contrast, Li, Best, Hansell, Ahmed, and Richardson (2012)
developed a model for identifying areas that exhibited unusual trends that were different from
the overall region wide trend, while Lee and Lawson (2016) presented a model for identifying
spatio-temporal clustering in the data.

An array of freely available software can now implement purely spatial areal unit models,
ranging from general purpose statistical modelling software such as BUGS (Lunn, Spiegelhal-
ter, Thomas, and Best 2009) and R-INLA (Rue, Martino, and Chopin 2009), to specialist
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spatial modelling packages in R (R Core Team 2016) such as CARBayes (Lee 2013), spatcounts
(Schabenberger 2009) and spdep (Bivand and Piras 2015). However, specialist software for
spatio-temporal modelling is much less well developed, with examples for geostatistical data
including spTimer (Bakar and Sahu 2015) and spBayes (Finley, Banerjee, and Gelfand 2015).
For areal unit data the surveillance (Paul and Meyer 2016) package models epidemic data, the
plm (Croissant and Millo 2008) and splm (Millo and Piras 2012) packages model panel data,
while the nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2015) and lme4 (Bates,
Michler, Bolker, and Walker 2015) packages have functionality to model spatial and temporal
random effects structures. However, software for fitting a range of spatio-temporal areal unit
models with CAR type autocorrelation structures is not available, which has motivated the
development of CARBayesST (Lee, Rushworth, and Napier 2018).

CARBayesST can fit models with the following spatio-temporal structures: (i) a spatially
varying linear time trends model (similar to Bernardinelli, Clayton, Pascutto, Montomoli,
Ghislandi, and Songini 1995); (ii) a spatial and temporal main effects and interaction model
(similar to Knorr-Held 2000); (iii) a spatially autocorrelated autoregressive time series model
(Rushworth, Lee, and Mitchell 2014); (iv) a model with a common temporal trend but varying
spatial surfaces (similar to Napier, Lee, Robertson, Lawson, and Pollock 2016); (v) a spatially
adaptive smoothing model for localised spatial smoothing (Rushworth, Lee, and Sarran 2017);
(vi) a spatio-temporal clustering model (Lee and Lawson 2016); and (vii) a model for clus-
tering areas based on their temporal trends (Napier, Lee, Robertson, and Lawson 2018). The
software has the same syntax and feel as the R package CARBayes for spatial areal unit
modelling, and retains all of its easy-to-use features. These include specifying the spatial
adjacency information via a single matrix (unlike BUGS that requires 3 separate list objects),
fitting models via a one-line function call, and compatibility with CARBayes that allows it
to share the latter’s model summary functionality for interpreting the results. The models
available in this software can be fitted to binomial, Gaussian (in some cases) and Poisson
data, and Section 2 summarises the models that can be implemented. Section 3 provides an
overview of the software and its functionality, while Section 4 presents simulation results to
illustrate the correctness of the CARBayesST implementation of one of the models. Sections
5 and 6 present two worked examples illustrating how to use the software for epidemiological
and housing market research, while Section 7 concludes with a summary of planned future
developments.

2. Spatio-temporal models for areal unit data

This section outlines the class of Bayesian hierarchical models that CARBayesST can imple-
ment, and in all cases inference is based on Markov chain Monte Carlo (MCMC) simulation.
The first part of this section outlines the general hierarchical model that can be fitted, while
the second describes the range of space-time random effects structures that are available.

2.1. General Bayesian hierarchical model

The study region comprises a set of k = 1, ..., K non-overlapping areal units S = {S1,...,Sk},
and data are recorded for each unit for ¢t = 1,..., N consecutive time periods. Thus data are
available for a K x N rectangular array with K rows (spatial units) and N columns (time pe-
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riods). The response data are denoted by Y = (Y1,...,YN)rkxn, where Y; = (Yig, ..., Yit)
denotes the K x 1 column vector of observations for all K spatial units for time period

t. Next, a vector of known offsets are denoted by O = (O1,...,On)xgxN, where similarly
O; = (O1y,...,0FK¢) denotes the K x 1 column vector of offsets for time period t. Finally,
Xt = (Thet, .-, Thep) 18 & vector of p known covariates for areal unit £ and time period t,

and can include factors or continuous variables and a column of ones for the intercept term.
Note, non-linear covariate-response relationships can be included by adding transformations
(e.g., squared) or spline basis functions (e.g., using ns()) of covariates to x;;. CARBayesST
can fit the following generalised linear mixed model to these data.

Yiel e ~ f(ykt\ukt,l/2) fork=1,...,K, t=1,...,N, (1)
() = X;It,@ + Okt + Vgt

The vector of covariate regression parameters are denoted by B = (51, ..., [p), and a multi-
variate Gaussian prior is assumed with mean pg and diagonal variance matrix ¥z that can
be chosen by the user. The v term is a latent component for areal unit k& and time period
t encompassing one or more sets of spatio-temporally autocorrelated random effects, and the
complete set are denoted by ¥ = (¢¥q,...,¢y), where ¥, = (¢Y14,...,¥k:). CARBayesST
can fit a number of different spatio-temporal structures for ¥y;, which are outlined in Section
2.2 below. The software can implement Equation 1 for binomial, Gaussian and Poisson data,
and the exact specifications of each are given below:

e Binomial - Y;; ~ Binomial(ng, 0¢) and In(fx/(1 — 0ge)) = katﬁ + Ot + Vg
e Gaussian - Y3; ~ N(up,v?) and pup = XLB + Ot + Vg

e Poisson - Yi; ~ Poisson(ug) and In(ug) = x;t,ﬁ + Ot + Vg

In the binomial model (ng, Ox:) respectively denote the number of trials and the probability
of success in each trial in area k and time period ¢, while in the Gaussian model 2 is the
observation variance. An inverse-gamma(a,b) prior is specified for 2, and default values of
(a =1, b=0.01) are specified by the software but can be changed by the user.

2.2. Spatio-temporal random effects models

Spatial autocorrelation is controlled by a symmetric non-negative K x K neighbourhood or
adjacency matrix W = (wy;), where wy; represents the spatial closeness between areal units
(Sk,Sj). Larger valued elements represent spatial closeness between the two areas in question,
where as smaller or zero values correspond to areas that are not spatially close. Typically,
W is assumed to be binary, where wy; = 1 if areal units (S, S;) share a common border
(i.e., are spatially close) and is zero otherwise. Additionally, wir = 0. Under this binary
specification the values of (vy¢, ;) for spatially adjacent areal units (where wy; = 1) are
spatially autocorrelated, where as values for non-neighbouring areal units (where wy; = 0)
are conditionally independent given the remaining {v;;} values. This binary specification of
W based on sharing a common border is the most commonly used for areal data, but the
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only requirement by CARBayesST is for W to be symmetric, non-negative, and for each row
sum to be greater than zero. Similarly, the model ST.CARanova() defined below uses a binary
N x N temporal neighbourhood matrix D = (dy;), where dyj = 1if |j —t| =1 and d¢j = 0
otherwise.

CARBayesST can fit the models for @ outlined in Table 1, and full details for each one are
given below. Out of these models ST.CARlinear (), ST.CARanova() and ST.CARar () are the
simplest in terms of parsimony, and thus missing (NA) values are allowed in the response data
(Y) for these models, and are estimated using data augmentation (Tanner and Wong 1987).
Missing values are not allowed in the remaining models as they have more complex forms, and
exploratory simulated-based testing showed that missing values could not be well recovered
in these cases.

ST.CARlinear ()

This model is a modification of that proposed by Bernardinelli et al. (1995), and estimates
correlated linear time trends for each areal unit. Thus it is appropriate if the goal of the
analysis is to estimate which areas are exhibiting increasing or decreasing (linear) trends in
the response over time. The full model specification is given below.

v = Bt (a+ i)l @)

K
Pint Z i wkjgbj )
¢k’¢—kaw ~ N 174 J , = int 7
Pint ijl Wk + 1= pint pint ijl Wi + 1 — pint
K
pl i — wk‘5 7'2
5k\5_k,W ~ N s[o{Z] L7 , = slo ’
Pslo Zj:l Wi + 1 = psio Psio ijl Wi + 1 — psio
Tﬁlt, 7'5210 ~ Inverse-Gamma(a, b),

Pint Pslo ~ Uniform(0,1),
Qo N(Nouffi)v

where ¢—k = ((Z51, cesy ¢k,1, ¢k+17 ey (25]() and (Lk = (51, ce 75k7175k+17 ey 5K) Here t_ =
(1/N) Zi\;l t, and the linear temporal trend t* = (¢t —¢)/N runs over a centred unit interval.
Thus areal unit &k has its own linear time trend, with a spatially varying intercept 81 + ¢ and
a spatially varying slope « + 0. Note, the 1 term comes from the covariate component x;t,B
in (1). The random effects ¢ = (¢1,...,¢x) and § = (d1,...,dx) are modelled as spatially
autocorrelated by the CAR prior proposed by Leroux, Lei, and Breslow (2000), and are mean
centred, that is Z]K:1 ¢j = Zszl d; = 0. Here (pint, psio) are spatial dependence parameters,
with values of one corresponding to strong spatial smoothness that is equivalent to the intrinsic
CAR prior proposed by Besag et al. (1991), while values of zero correspond to independence
(for example if pg, = 0 then §; ~ N(O,TSQZ ,))- Flat uniform priors on the unit interval are
specified for the spatial dependence parameters (pint, psio), While conjugate inverse-gamma
and Gaussian priors are specified for the random effects variances (72,,72,) and the overall
slope parameter « respectively. The corresponding hyperparameters (a, b, jiq, 02) can be cho-

sen by the user, and the default values are (a = 1, b = 0.01, po = 0, 02 = 1000), which
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Model Equation Description

ST.CARlinear() (2)

This model is similar to that proposed by Bernardinelli et al.
(1995), and represents the spatio-temporal pattern in the mean
response with spatially varying linear time trends. Allowable
data models are binomial, Gaussian and Poisson.

ST.CARanova() (3)

This model is similar to that proposed by Knorr-Held (2000),
and represents the spatio-temporal pattern in the mean response
with an ANOVA style decomposition into overall spatial and
temporal main effects and a space-time interaction. Allowable
data models are binomial, Gaussian and Poisson.

ST.CARsepspatial() (4)

This model is that proposed by Napier et al. (2016), and repre-
sents the spatio-temporal pattern in the mean response with an
overall temporal effect and separate independent spatial effects
for each time period. Allowable data models are binomial and
Poisson.

ST.CARar () (5)

This model is that proposed by Rushworth et al. (2014), and
represents the spatio-temporal pattern in the mean response
with a single set of spatially and temporally autocorrelated ran-
dom effects. The effects follow a multivariate autoregressive pro-
cess of order 1. Allowable data models are binomial, Gaussian
and Poisson.

ST.CARadaptive()  (7)

This model is that proposed by Rushworth et al. (2017), and
has the same spatio-temporal random effect structure as the
ST.CARar () model, but with an adaptive spatial autocorrela-
tion structure via estimation of W. Allowable data models are
binomial, Gaussian and Poisson.

ST.CARlocalised() (9)

This model is that proposed by Lee and Lawson (2016), and has
the spatio-temporal random effect structure as the ST.CARar ()
model, with an additional piecewise constant intercept term.
Allowable data models are binomial and Poisson.

ST.CARclustrends() (12)

This model is that proposed by Napier et al. (2018), and is
a mixture model for clustering areas based on their temporal
trends in disease risk, where the candidate trend functions have
fixed parametric forms or constrained shapes. Allowable data
models are binomial and Poisson.

Table 1: Summary of the models available in the CARBayesST package together with the
equation numbers defining them mathematically in this paper.
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correspond to weakly informative prior distributions. Alternatively, the dependence parame-
ters (pint, Psio) can be fixed at values in the unit interval [0, 1] rather than being estimated,
by specifying arguments (pint, psio) in the ST.CARlinear () function. Finally, missing (NA)
values are allowed in the response data Y for this model.

ST.CARanova()

The model is a modification of that proposed by Knorr-Held (2000), and decomposes the
spatio-temporal variation in the data into 3 components, an overall spatial effect common
to all time periods, an overall temporal trend common to all spatial units, and a set of
independent space-time interactions. This model is appropriate if the goal is to estimate
overall time trends and spatial patterns, and the model is given by.

Ve = Gr+ 0 + Vit (3)
K
PS D j—1 WkjP; 72
¢k|¢—k7w ~ N K ! ) K S )
ps Zj:l Wgj + 1—ps ps ijl Wgj + 1—pg
N
T A d 5 2
6|0, D ~ N PNZ],1 K , - T ’
pT Zj:l dij +1—pr pr ijl dij +1—pr

Vet N(077—12)’

72, 7%, 1% ~ Inverse-Gammal(a,b),

ps,pr ~ Uniform(0,1).

Here the spatio-temporal autocorrelation is modelled by a common set of spatial random
effects ¢ = (¢1,...,¢x) and a common set of temporal random effects § = (d1,...,0y), and
both are modelled by the CAR prior proposed by Leroux et al. (2000). Additionally, the model
can incorporate an optional set of independent space-time interactions v = (v11,...,7xN),
which can be specified by the argument interaction=TRUE (the default) in the function call.
All sets of random effects are mean centred. Fixed uniform (pg, pr) and conjugate (72,7, 77)
priors are specified for the remaining parameters, and the default specifications for the latter
are (a = 1, b = 0.01). Alternatively, in common with the ST.CARlinear () function the
dependence parameters (pg, pr) can be fixed at values in the unit interval [0, 1] rather than
being estimated in the model, for full details see the help file for this function. Finally, missing
(NA) values are allowed in the response data Y for this model.

ST.CARsepspatial ()

The model is a generalisation of that proposed by Napier et al. (2016), and represents the data
by two components, an overall temporal trend, and separate spatial surfaces for each time
period that share a common spatial dependence parameter but have different spatial variances.
This model is appropriate if the goal is to estimate both a common overall temporal trend
and the extent to which the spatial variation in the response has changed over time. The
model specification is given below.
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Ukt = Qpt + O, (4)
Ps Zf:l Wi Pjt 2
¢kt|¢—ktvw ~ N 174 , 174 ,
Ps Zj:l wgj +1—ps ps Zj:l wi; +1—pg
N
PT Zj:1 dy0; T%
66+, D ~ N ~ 7 . :
pr i1 dij + 1= pr prd i dy+1—pr
Ly TR, T8, ~ Inverse-Gamma(a, b),

ps,pr ~ Uniform(0,1),

where ¢_j; = (A1, Ph—1,6> Pht1t)---> Pk t)- This model fits an overall temporal trend
to the data 6 = (d1,...,dn) that is common to all areal units, which is augmented with
a separate (uncorrelated) spatial surface ¢, = (b1y,...,¢K¢) at each time period ¢. The

overall temporal trend and each spatial surface are modelled by the CAR prior proposed by
Leroux et al. (2000), and the latter have a common spatial dependence parameter pg but
a temporally-varying variance parameter 72. Thus the collection (73,..., 712\,) allows one to
examine the extent to which the magnitude of the spatial variation in the data has changed
over time. Note that here we fix pg to be constant in time as it is not orthogonal to 77, thus if
it varied then any changes in 72 would not directly correspond to changes in spatial variance
over time. As with all other models the random effects are zero-mean centred, while flat and
conjugate priors are specified for (ps, pr) and (74,72, ...,7%) respectively. Alternatively, in
common with the ST.CARanova() function, the dependence parameters (pg, pr) can be fixed
at values in the unit interval [0, 1] rather than being estimated in the model. Missing (NA)

values are not allowed in the response data Y in this model.

ST.CARar()

The model is that proposed by Rushworth et al. (2014), and represents the spatio-temporal
structure with a multivariate first order autoregressive process with a spatially correlated
precision matrix. This model is appropriate if one wishes to estimate the evolution of the
spatial response surface over time without forcing it to be the same for each time period. The
model specification is given below.

Yt = Pt (5)
dilpp—y ~ N (PT¢t71a7'2Q(W>PS)_1) t=2,...,N,

¢ ~ N(0,7°Q(W,ps)™"),

7%~ Inverse-Gammal(a, b),

ps,pr ~ Uniform(0,1).

In this model ¢, = (¢1¢, . - ., Pxt) is the vector of random effects for time period ¢, which evolve
over time via a multivariate first order autoregressive process with temporal autoregressive
parameter pp. The temporal autocorrelation is thus induced via the mean pr¢,_;, while
spatial autocorrelation is induced by the variance 72Q(W, ps)~!. The corresponding precision
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matrix Q(W, pg) was proposed by Leroux et al. (2000) and corresponds to the CAR models
used in the other models above. The algebraic form of this matrix is given by

Q(W, ps) = psdiag(W1) — W]+ (1 — pg)I, (6)

where 1 is the K x 1 vector of ones while I is the K x K identity matrix. In common with all
other models the random effects are zero-mean centred, while flat and conjugate priors are
specified for (pg, pr) and 72 respectively, with (a = 1,b = 0.01) being the default values for
the latter. In common with the ST.CARanova() function the dependence parameters (pg, pr)
can be fixed at values in the unit interval [0, 1] rather than being estimated in the model.
Finally, missing (NA) values are allowed in the response data Y for this model.

ST.CARadaptive()

The model is that proposed by Rushworth et al. (2017), and is an extension of ST.CARar ()
proposed by Rushworth et al. (2014) to allow for spatially adaptive smoothing. It is appro-
priate if one believes that the residual spatial autocorrelation in the response after accounting
for the covariates is consistent over time but has a localised structure. That is, it is strong in
some parts of the study region but weak in others. The model has the same autoregressive
random effects structure as ST.CARar (), namely:

¢kt = ¢kt7 (7)
¢t|¢t71 ~ N(pT¢t7177—2Q(W7PS)_1) t=2,...,N,

¢1 ~ N(0,7°Q(W,ps)™'),

7%~ Inverse-Gamma(a, b),

ps,pr ~ Uniform(0,1).

However, the random effects from ST.CARar () have a single level of spatial dependence that
is controlled by pg. All pairs of adjacent areal units (for which wy; = 1) will have strongly
autocorrelated random effects if pg is close to one, while no such spatial dependence will exist
anywhere if pg is close to zero. However, real data may exhibit spatially varying dependences,
as two adjacent areal units may exhibit similar values suggesting a value of pg close to one,
while another adjacent pair may exhibit very different values suggesting a value of pg close
to zero.

This model allows for localised spatial autocorrelation by allowing spatially neighbouring ran-
dom effects to be correlated (inducing smoothness) or conditionally independent (no smooth-
ing), which is achieved by modelling the non-zero elements of the neighbourhood matrix W
as unknown parameters, rather than assuming they are fixed at 1. For this model W must be
a binary matrix. These adjacency parameters are collectively denoted by wt = {wy;|k ~ j},
where k ~ j means areas (k,j) are neighbours and wy; = 1. Estimating wy; € w* equal to
zero means (¢xt, ¢j¢) are conditionally independent for all time periods ¢ given the remaining
random effects, while estimating it close to one means they are correlated. These adjacency
parameters in w are each modelled on the unit interval, by assuming a multivariate Gaussian
prior distribution on the transformed scale vt = log (w™ /(1 — w™)). This prior is a shrinkage
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model with a constant mean p and a diagonal variance matrix with variance parameter (2,
and is given by

Pl o e | o | S0 - || (5)

Vik evt

72~ TInverse-Gamma(a, b).

The prior distribution for v assumes that the degree of smoothing between pairs of adja-
cent random effects is not spatially dependent, which results from the work of Rushworth
et al. (2017) that shows poor estimation performance when v (and hence w) is assumed
to be spatially autocorrelated. Under small values of 72 the elements of vt are shrunk to
i, and here we follow the work of Rushworth et al. (2017) and fix u = 15 because it avoids
numerical issues when transforming between v and w™ and implies a prior preference for
values of wy; close to 1. That is as 72 — 0 the prior becomes the global smoothing model
ST.CARar (), where as when 72 increases both small and large values in w* are supported
by the prior. As with the other models the default values for the inverse-gamma prior for 72
are (a = 1,b=0.01). It is possible to fix pg using the rho argument. For further details see
Rushworth et al. (2017). Missing (NA) values are not allowed in the response data Y in this
model.

ST.CARlocalised()

The model was proposed by Lee and Lawson (2016), and augments the smooth spatio-
temporal variation in ST.CARar () with a piecewise constant intercept process. This model is
appropriate when the aim of the analysis is to identify clusters of areas that exhibit elevated
(or reduced) values of the response compared with their geographical and temporal neigh-
bours. Thus this model is similar to ST.CARadaptive(), in that both relax the restrictive
assumption that if two areas are close together then their estimated random effects must
be similar. This model captures any step-changes in the response via the mean function,
whereas ST.CARadaptive() captures them via the correlation structure (via W). Model
ST.CARlocalised() is given by

Vet = Az + Okt (9)
Gild1 ~ N(prdp_, 7°Q(W)") t=2...,N,

¢ ~ N(0,7°Q(W)7),

72~ Inverse-Gamma(a,b),

pr ~ Uniform(0,1),

where the ‘77 in Q(W)~ denotes a generalised inverse. The random effects ¢ = (¢, ..., Pp)
are modelled by a simplification of the ST.CARar () model with pg = 1, which corresponds to
the intrinsic CAR model proposed by Besag et al. (1991). Note, for this model the inverse
Q(W)~! does not exist as the precision matrix is singular. This simplification is made so
that the random effects capture the globally smooth spatio-temporal autocorrelation in the
data, allowing the other component to capture localised clustering and step-changes. This



Duncan Lee, Alastair Rushworth, Gary Napier

second component is a piecewise constant clustering or intercept process Az,,. Spatially and
temporally adjacent data points (Y, Yjs) will be similar if they have the same intercept,
that is if Az,, = Az,,, but exhibit a step-change if they are have different intercepts, that is
if Az,, # Az;,- The piecewise constant intercept or clustering process comprises at most G
distinct levels, making this component a piecewise constant intercept term. The G levels are
ordered via the prior specification:

Aj ~ Uniform(Aj_1,Aj41) forj=1,...,G, (10)

where \g = —o0 and A\gy1 = oo. Here Zy; € {1,...,G} and controls the assignment of the
(k,t)th data point to one of the G intercept levels. A penalty based approach is used to model
Zyt, where GG is chosen larger than necessary and a penalty prior is used to shrink it to the
middle intercept level. This middle level is G* = (G +1)/2 if G is odd and G* = G/2 if G
is even, and this penalty ensures that Z;; is only in the extreme low and high risk classes if
supported by the data. Thus G is the maximum number of distinct intercept terms allowed
in the model, and is not the actual number of intercept terms estimated in the model. The
allocation prior is independent across areal units but correlated in time, and is given by:

exp(=0[(Zkt — Zki-1)* + (Zre — G*)?))

>y exp(=0[(r = Zgi1)? + (r — G*)?))
exp(=8(Zp — G*)?)

>y exp(=3(r — G*)?)’

d ~ Uniform(1,m).

F(Zt| Zrp—1) fort=2,...,N, (11)

Temporal autocorrelation is induced by the (Z; — Zk,t,l)z component of the penalty, while
the (Zy; — G*)? component penalises class indicators Zj; towards the middle risk class G*.
The size of this penalty and hence the amount of smoothing that is imparted on Z is con-
trolled by 0, which is assigned a uniform prior. The default value is m = 10, and full details
of this model can be found in Lee and Lawson (2016) Missing (NA) values are not allowed in
the response data Y in this model.

ST.CARclustrends()

The model is that proposed by Napier et al. (2018) and represents the data by two components,
an overall spatial pattern, and a mixture of temporal trend functions with fixed parametric
forms (e.g. linear, step-change) or constrained shapes (e.g. monotonically increasing). Note
here that due to identifiability issues, covariates are not allowed in this model, but offsets
(using the offset () function) are allowed. This model is appropriate if the goal is to identify
clusters of areas that exhibit similar temporal trends. The model specification is given below.

11
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S
e = ¢k+zwksfs(t|7s)a (12)
s=1
K
pZ':1wk¢' 72
¢k‘¢—k7w7p77—2 ~ N( K . 2 ’ K )
PO Wi+ 1—p pd i qwgi+1—p

7% ~ Inverse-Gamma(a, b),

p ~ Uniform(0,1),
wi = (Wk1, ..., wks) ~ Multinomial(1; A),
A= (A1,...,Ag) ~ Dirichlet(a = (a1, ...,as)),

where ¢_;, = (¢1,...,Pk—1, Pk+1,---,Pr). This model fits an overall spatial pattern to the
data ¢ = (¢1,...,¢K) that is common to all time periods, which is modelled by the CAR
prior proposed by Leroux et al. (2000). As with all other models the spatial random effects
are zero-mean centred, while flat and conjugate priors are specified for p and 72 respectively
with (a = 1,b = 0.01) being the default values. The model clusters areas according to their
temporal trends where the S trends (fi(t|7yy),..., fs(tvg)) are user-specified and are given
in Table 2. An area k is assigned to one of the S candidate trends via the binary indicator

wi = (Wk1,---,wks), where wgs = 1 if area k is assigned to trend s, and is zero otherwise.
Region-wide probabilities are associated with each candidate trend via A = (Aq,...,As),
and are assigned a weakly informative conjugate Dirichlet prior distribution (a; = 1 for
i=1,...,9).

Table 2: ST.CARclustrends() temporal trend functions. The shapes of the trend functions
come via the prior specifications of the 7’s. The known change point is denoted by t*.

Trend Function R identifier

Constant f@) = Constant
. decreasing f(f|’y) LD
Linear increasing  f(t|y) = f\/t LI
. peak Fty) = mt 472t = %) 4 cp

K h t
nown change poin trough FUEA) = it +2(t — )4 oT
3 3

Monotonic cubic splines fiecreas.mg f(tly) =0t + ZJ 17 (t— ); MD
increasing  f(tly) = yot + 27, vt — iff‘)+ MI

2.3. Inference

All models in this package are fitted in a Bayesian setting using Markov chain Monte Carlo
simulation. All parameters whose full conditional distributions have a closed form distribu-
tion are Gibbs sampled, which includes the regression parameters (3) and the random effects
(e.g., ¢ etc) in the Gaussian data models, as well as the variance parameters (e.g., 72 etc) in
all models. The remaining parameters are updated using Metropolis or Metropolis-Hastings
steps, and the random effects in the binomial and Poisson data models can be updated via
the simple Gaussian random walk Metropolis algorithm or the Metropolis Adjusted Langevin
Algorithm (MALA, Roberts and Rosenthal 1998). The default is to use MALA, but the user
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can choose simple random walk Metropolis steps by specifying the MALA=FALSE argument in
the function call. The regression parameters are updated in blocks of size 10 utilising MALA
updates, although if only a single covariate is incorporated in the model or only an inter-
cept term, then simple random walks are used as they were found to perform better. The
remaining parameters utilise simple Gaussian random walk Metropolis updates. The simple
random walk Metropolis updates are automatically tuned in the algorithms to have accep-
tances rates of between 40% - 50% for scalar parameter updates and between 20% - 40%
for vector parameters. The MALA updates are also automatically tuned in the software to
have acceptance rates between 40% - 50%. The overall functions that implement the MCMC
algorithms are written in R, while the computationally intensive updating steps are written as
computationally efficient C++ routines using the R package Repp (Eddelbuettel and Francois
2011). Additionally, the sparsity of the neighbourhood matrices W and D are utilised via
their triplet forms when updating the random effects within the algorithms, which increases
the computational efficiency of the software.

One of the challenges of fitting Bayesian models using any software is determining when the
Markov chains have converged, and as a result how many samples to discard as the burn-in
period and then how many more to generate on which to base inference. Convergence can be
assessed using many metrics, the simplest of which is by eye, by viewing trace-plots of the
parameters that should be stationary and show random fluctuations around a single mean
level (see Figure 1 for an example of Markov chains showing no evidence against convergence).
In addition, CARBayesST presents the convergence diagnostic proposed by Geweke (1992)
for sample parameters when applying the print () function to a fitted model object, which
uses the geweke.diag() function from the coda package. This statistic is in the form of a
Z-score, and values between (-1.96, 1.96) are suggestive of convergence. A full discussion of
how many samples to generate, burn-in lengths and whether or not to thin the Markov chains
are beyond the scope of this vignette, and further details can be found in general texts on
Bayesian modelling such as Robert and Casello (2010) and Gelman, Carlin, Stern, Dunson,
Vehtari, and Rubin (2013). Additionally, further details of MCMC algorithm for CAR-type
models are given by Rue and Held (2005) and Gerber and Furrer (2015).

3. Loading and using the software

3.1. Loading the software

CARBayesST can be downloaded from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/) for Windows, Linux and macOS platforms. The package
requires R (> 3.0.0) and depends on packages MASS (Venables and Ripley 2002) and Rcpp
(> 0.11.5). Additionally, it imports functionality from the CARBayesdata (Lee 2016), coda
(Plummer, Best, Cowles, and Vines 2006), dplyr (Wickham and Francois 2015), gtools
(Warnes, Bolker, and Lumley 2018), leaflet (Cheng, Karambelkar, and Xie 2018), matrix-
calc (Novomestky 2012), sp (Bivand, Pebesma, and Gomez-Rubio 2013), spam (Furrer and
Sain 2010), spdep, stats, testthat (Wickham 2011), truncdist (Novomestky and Nadarajah
2012), truncnorm (Trautmann, Steuer, Mersmann, and Bornkamp 2014) and utils packages.
Once installed it can be loaded using the command library("CARBayesST").
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The packages listed above are automatically loaded for use in CARBayesST by the above
call, but a complete spatial analysis beginning with reading in and formatting shapefiles
and data, creating the neighbourhood matrix W, and plotting the results requires a number
of other packages. Thus the worked examples in this paper utilise functionality from the
following packages: CARBayes, CARBayesdata, dplyr, leaflet, maptools (Bivand and Lewin-
Koh 2015), MASS, sp and spdep.

3.2. Using the software

The software can fit seven models: ST.CARlinear (), ST.CARanova(), ST.CARsepspatial(),
ST.CARar (), ST.CARadaptive() ST.CARlocalised(), and ST.CARclustrends() and full de-
tails of the arguments required for each function are given in the help-files. However, the main
arguments common to all the functions that are required for a baseline analysis (for example
using default priors) are as follows.

e formula - A formula for the covariate part of the model using the syntax of the 1m()
function. Offsets can be included here using the offset() function. The response and
each covariate should be vectors of length (KN)*1, where K is the number of spatial
units and N is the number of time periods. Each vector should be ordered so that the
first K data points are the set of all K spatial locations at time 1, the next K are the
set of spatial locations for time 2 and so on.

e family - One of either "binomial”, "gaussian” or "poisson”.

e trials - This is a vector the same length and in the same order as the response con-
taining the total number of trials for each area and time period. This is only needed if
family="binomial".

e W- A K x K symmetric and non-negative neighbourhood matrix, whose row sums must
all be positive.

e burn-in - The number of MCMC samples to discard as the burn-in period.

e n.sample - The number of MCMC samples to generate.

When a model has been fitted in CARBayesST, the software provides the following summary
extractor functions:

e coef () - returns the estimated (posterior median) regression coefficients.

fitted() - returns the fitted values based on posterior means.

logLik () - returns the estimated loglikelihood based on posterior means.

model .matrix () - returns the design matrix of covariates.

print () - prints a summary of the fitted model to the screen, including both parameter
summaries and convergence diagnostics for the MCMC run.
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e residuals() - returns either the "response” (raw), or "pearson”, residuals from the
model (based on posterior means).

Additionally, the CARBayes functions summarise.samples() and summarise.lincomb() can
be applied to CARBayesST models to summarise the results. The software updates the user
on its progress to the R console, which allows the user to monitor the function’s progress.
However, using the verbose=FALSE option will disable this feature. Once run, each model
returns a list object with the following components.

e summary.results - A summary table of selected parameters that is presented when
using the print() function. The table includes the posterior median (Median) and
95% credible interval (2.5%, 97.5%), the number of samples generated (n.sample), the
acceptance rate for the Markov chain (% accept), the effective number of independent
samples using the effectiveSize() function from the coda package (n.effective),
and the convergence diagnostic proposed by Geweke (1992) and implemented in the
coda package (Geweke.diag). This diagnostic takes the form of a Z-score, so that
convergence is suggested by the statistic being within the range (-1.96, 1.96).

e samples - A list containing the MCMC samples from the model, where each element in
the list is a matrix. The names of these matrix objects correspond to the parameters
defined in Section 2 of this paper, and each column contains the set of samples for a single
parameter. For example, for ST.CARlinear () the (tau2, rho) elements of the list have
columns ordered as (72, 73,) and (p3,,, p4,) respectively. Similarly, for ST.CARanova ()
the (tau2, rho) elements of the list have columns ordered as (72, 72, 77) (the latter only
if interaction=TRUE) and (p%, p3) respectively. Finally, each model returns samples
from the posterior distribution of the fitted values for each data point (fitted), and

the missing values in the response variable (Y).

e fitted.values - A vector of fitted values based on posterior means for each area and
time period in the same order as the data Y.

e residuals - A matrix of 2 types of residuals in the same order as the response. The 2
columns of this matrix correspond to “response” (raw), and “pearson”, residuals.

e modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter, Best, Carlin, and Van der Linde 2002) and its corresponding estimated effec-
tive number of parameters (p.d), the Watanabe-Akaike Information Criterion (WAIC,
Watanabe 2010) and its corresponding estimated number of effective parameters (p.w),
the Log Marginal Predictive Likelihood (LMPL, Congdon 2005) and the loglikelihood.
The best fitting model is one that minimises the DIC and WAIC but maximises the
LMPL. If the response data contains missing data, the DIC is computed based on only
the observed data (see Celeux, Forbes, Robert, and Titterington (2006)).

e accept - The acceptance probabilities for the parameters.

e localised.structure - This element is NULL except for the models ST.CARadaptive ()
and ST.CARlocalised(). For ST.CARadaptive() this element is a list with 2 K x K
matrices, Wmn and W99, which summarise the estimated adjacency relationships. Wmn
contains the posterior median for each wy; element estimated in the model for adjacent
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areal units, while W99 contains indicator variables for whether P(wj; < 0.5[Y) > 0.99.
For both matrices, elements corresponding to non-adjacent pairs of areas have NA values.
For ST.CARlocalised () this element is a vector of length K'T'x 1, and gives the posterior
median class (Zy; value) that each data point is assigned to. This vector is in the same
order as the data Y.

e formula - The formula (as a text string) for the covariate and offset parts of the model.
e model - A text string describing the model that has been fitted.

e X - The design matrix of covariates inherited from the formula argument.

The remainder of this vignette illustrates the CARBayesST software via a small simulation
study to illustrate the correctness of the MCMC algorithms, as well as two worked examples,
the latter of which utilise spatio-temporal data to answer important questions in public health
and the housing market.

4. Simulation exercises

This section is split into 3 parts. The first illustrates how to use the software to fit a model, the
second presents a short simulation study to illustrate the correctness of the CARBayesST im-
plementation of a model, while the third describes a comparison of run times for various data
sizes. All three exercises are based on the ST.CARanova() model, but similar studies could be
done for the other models. We note in passing that the correctness of the CARBayesST imple-
mentations of the ST.CARsepspatial() (Napier et al. 2016), ST.CARar() (Rushworth et al.
2014), ST.CARadaptive () (Rushworth et al. 2017), and ST.CARlocalised() (Lee and Lawson
2016) models have been assessed in the accompanying papers where the models were devel-
oped. Here we generate data from a binomial logistic model, thus the model comprises the
data likelihood Yj; ~ Binomial(ng = 50, 6x) and In(0x¢/(1—0kt)) = B1+xktP2+ ke, which
is combined with (3), yielding parameters (Bax1, @x x1, SNx1s YK N1 £S5 PTs Ty T2, T2). Gen-
eration of the data is described below, and in what follows we fix 3 = (0,0.1), ps = pr = 0.8,
Tg = 7'% = 7'12 = 0.01.

4.1. Generating data and fitting a model

Consider a spatial region comprising K = 400 areal units on a regular 20 x 20 grid and N = 20
consecutive time periods. Such a grid can be constructed from the code

R> n.space <- 20

R> N <- 20

R> x.easting <- 1:n.space

R> x.northing <- 1:n.space

R> Grid <- expand.grid(x.easting, x.northing)
R> K <- nrow(Grid)

R> N.all <- N * K

A binary 400 x 400 spatial neighbourhood matrix W can be constructed for this region based
on spatial adjacency (rook, in chess) using the code
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R> distance <- as.matrix(dist(Grid))
R> W <- array(0, c(K,K))
R> W[distance==1] <- 1

Similarly, a binary 20 x 20 temporal neighbourhood matrix D can be constructed using the
code

R> distance <- as.matrix(dist(1:N))
R> D <-array(0, c(N,N))
R> D[distance==1] <-1

From W the precision matrix can be computed for the multivariate Gaussian representation
of the spatial random effects ¢ from (6) as follows:

R> Q.W <- 0.8 * (diag(apply(W, 2, sum)) - W) + 0.2 * diag(rep(1,K))

where pg = 0.8. This matrix can then be inverted and a sample of random effects ¢ generated
(assuming 72 = 0.01) using the code

R> Q.W.inv <- solve(Q.W)

R> library("MASS")

R> phi <- mvrnorm(n = 1, mu = rep(0, K), Sigma = (0.01 * Q.W.inv))
R> phi <- phi - mean(phi)

R> phi.long <- rep(phi, N)

where the random effects have been mean centered in line 4. Here the last line repeats the
spatial random effects IV times, as the ST.CARanova() model assumes that there is a single
set of spatial random effects for all time periods. The temporal random effects under the
ST.CARanova() model have the same functional form but depend on D rather than W, and
thus a realisation can be generated analogously using the code

R> @.D <- 0.8 * (diag(apply(D, 2, sum)) - D) + 0.2 * diag(rep(1, N))
R> Q.D.inv <- solve(Q.D)

R> delta <- mvrnorm(n = 1, mu = rep(0, N), Sigma = (0.01 * Q.D.inv))
R> delta <- delta - mean(delta)

R> delta.long <- kronecker(delta, rep(1, K))

Again, the final line repeats the temporal random effects for each spatial unit. Next, we
generate space-time interactions and a covariate x, both of which are generated independently
from Gaussian distributions.

R> x <- rnorm(n = N.all, mean = 0, sd = 1)
R> gamma <- rnorm(n = N.all, mean = 0, sd = sqrt(0.01))

Finally, we set the intercept term (51 = 0, the regression coefficient So = 0.1, and the number
of trials for the binomial likelihood in each area and time period being ng; = 50. Then we
generate the response variable via the code below. Here LP denotes the linear predictor, which
contains an intercept term, a covariate and three sets of random effects (spatial, temporal,
and interactions).
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Figure 1: Posterior distributions of the regression parameters (the true values are f; = 0 and
B2 = 0.1). The left panel contains trace-plots while the right panel are density estimates.

R> betal <- 0

R> beta2 <- 0.1

R> n <- rep(50, N.all)

R> LP <- betal + beta2 * x + phi.long + delta.long + gamma
R> theta.true <- exp(LP) / (1 + exp(LP))

R> Y <- rbinom(n = N.all, size = n, prob = theta.true)

The ST.CARanova() model can then be applied to these data using the following code.

R> 1library("CARBayesST")
R> model <- ST.CARanova(formula = Y"x, family = "binomial", trials = n,
+ W = W, burnin = 20000, n.sample = 120000, thin = 10)

In the code above inference is based on 10,000 MCMC samples, which were generated from
a single Markov chain that was run for 120,000 iterations with a 20,000 burn-in period and
subsequently thinned by 10 to reduce the autocorrelation of the Markov chain. The model
object is a list containing elements such as the posterior samples for all parameters, fitted
values and residuals, and model fit criteria, and further details are given in Section 3. The
posterior samples are available in the samples element of the list object model, which is itself
a list of meme objects (from the coda package) for each set of parameters. Trace-plots of the
parameters for B can be produced using the code below, and the result is shown in Figure 1.

R> colnames(model$samples$beta) <- c("betal', "betal2")
R> plot(model$samples$beta)

The figures show no evidence against convergence, and that the posterior distributions for
both parameters are centred close to their true values. A summary of the fitted model can
be obtained using the print () function as follows.
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R> print(model)

HIHHHH

#### Model fitted

HIHHHH

Likelihood model - binomial (logit link function)

Latent structure model - spatial and temporal main effects and an interaction
Regression equation - Y 7 x

I
#### Results
HHHHHR S
Posterior quantities for selected parameters and DIC

Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag

(Intercept) 0.0011 -0.0052 0.0073 10000 35.2 8610.4 -0.1
X 0.0997 0.0930 0.1066 10000 35.2 8253.6 -0.6
tau2.8 0.0109 0.0082 0.0144 10000 100.0 6195.6 1.4
tau2.T 0.0086 0.0048 0.0170 10000 100.0 10000.0 0.9
tau2.1 0.0088 0.0058 0.0114 10000 100.0 153.9 -2.4
rho.S 0.6399 0.3762 0.8665 10000 44 .1 4123.4 -0.2
rho.T 0.6283 0.1793 0.9341 10000 69.0 10000.0 0.2
DIC = 43829.42 p.d = 980.5545 LMPL = -21946.29

The Summary is presented in two parts, the first of which describes the model that has
been fit. The second summarises the results, and includes the posterior median (Median)
and 95% credible intervals (2.5%, 97.5%) for selected parameters (not the random effects),
the convergence diagnostic proposed by Geweke (1992) (Geweke.diag) as a Z-score, and
the effective number of independent samples (n.effective). Also displayed are the actual
number of samples kept from the MCMC run (n.sample), as well as the acceptance rate for
each parameter (% accept). Note, parameters that have an acceptance rate of 100% have
been Gibbs sampled due to their full conditional distributions being a standard distribution.
Finally, the DIC and LMPL overall model fit criteria are displayed, which allows models with
different space-time structures to be compared.

4.2. Small simulation study

This section illustrates the correctness of the CARBayesST implementation of the ST.CARanova()
model, by simulating 100 data sets using the code presented above and summarising the bias
and 95% coverage probabilities of the estimated model parameters. However, we note that
this simulation study does not provide evidence against errors in the implementation, and
that also we have not validated CARBayesST against another software implementation. The
results of this simulation study are presented in Table 3, which shows bias and 95% coverage
probabilities (mean square error is not presented as we are not seeking to compare two dif-
ferent models) for (51, B2, ps, pT,Tg,T%,TIQ, ¢,0,7), as well as for the fitted values. For the
random effects and fitted values all results are averaged over both the 100 simulated data
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Parameter Bias Coverage probability
Bo -0.000202  0.940
B 0.000867 0.970
s -0.093660  0.910
oT -0.206200  0.940
72 -0.000471  0.970
T -0.000697  0.970
2 -5.52x107°  0.950
1) 4.29x1077  0.950
) -1.56x1077  0.948
~ -1.09x1077  0.947

Fitted values -0.002513 0.948

Table 3: Summary of the simulation study undertaken to assess the bias and 95% coverage
probabilities of the parameter estimates from the ST.CARanova() model. All results are based
on 100 simulated data sets generated as outlined above.

sets and over all the elements (either K, N or N.all) in each simulated data set. The results
show that overall the CARBayesST implementation of the ST.CARanova() model produces
largely unbiased parameter estimates, with all parameters except the dependence parameters
(ps, pr) having negligible biases. The largest bias in absolute size is -0.2062 for pp, which is
not surprising because it is a temporal dependence parameter estimated from data at only 20
time points. Additionally, the table shows that the coverage probabilities for all the param-
eters are close to the nominal 0.95 levels, suggesting that the 95% credible intervals are the
correct width.

4.3. Timing and data sizes

The final part of this section presents some timings for fitting the ST.CARanova() model to
data sets of various sizes. All data sets are generated as illustrated in Section 4.1. The results
are presented in Table 4, and relate to fitting the model for a total of 120,000 iterations,
with a burn-in period of 20,000 and thinning the resulting Markov chains by 10. The timings
were carried out on an Apple iMac computer with a 3.5 GHZ Intel Core i7 processor and
32GB 1600 MHz DDR3 memory. The table shows that the example run times range between
just over 2 minutes for 1,000 data points to around 3 hours and 45 minutes for 100,000 data
points, which shows the increased computational effort required as the number of data points
increases.

5. Example 1 - Quantifying the effect of air pollution on human health

This first example is an ecological regression problem, whose aim is to estimate the effect that
air pollution concentrations have on respiratory disease risk.

5.1. Data and exploratory analysis

For the purposes of delivering health care Scotland is split into 14 regional health boards,
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K N N.all Timing in seconds (h:m.s)
K =10x10=100 N=10 1,000 142 (2.21)
K=10x10=100 N=20 2,000 246 (4.06)

K=20x20=400 N=10 4,000 467 (4.47)

K =20x20=400 N=20 8,000 895 (14.55)

K =30x30=900 N=20 18,000 2247 (37.27)

K =30x30=900 N=30 27,000 3235 (53.55)

K =40 x40 =1600 N=30 48,000 5699 (1:34.59)

K =40 x 40 = 1600 N=40 64,000 7620 (2:07.00)

K =50 x50 =2500 N=40 100,000 13509 (3:45.09)

Table 4: Summary of the time taken to run the ST.CARanova() model in seconds (in hours
minutes and second in brackets) on a regular grid with different square grid sizes (K), numbers
of time periods (IN) and total number of data points (N.all).

and this study focuses on the Greater Glasgow and Clyde health board, which contains
the city of Glasgow and has a population of around 1.2 million people during the 2007
to 2011 study period. This health board is split into K = 271 Intermediate Geographies
(IG), which are also known as Intermediate Zones (IZ), which are a key geography for the
distribution of small-area statistics in Scotland and contain populations of between 2,468
and 9,517 people. We have yearly data for N = 5 years between 2007 and 2011 for the
K = 271 1Gs. The disease and covariate data are freely available from Scottish Statis-
tics (http://statistics.gov.scot/), while the particulate matter pollution concentrations
are available from the Department for the Environment, Food and Rural Affairs (DEFRA,
https://uk-air.defra.gov.uk/data/pcm-data).

The disease data are population level counts of the numbers of admissions to hospital in each
IG and year with a primary diagnosis of respiratory disease, which corresponds to the Inter-
national Classification of Disease tenth revision (ICD-10) codes J00-J99 and R09.1. However,
the observed numbers of admissions in an IG and year depends on the size and demographic
structure (e.g., age and sex profile) of the population living there, which is adjusted for using
indirect standardisation. This involves computing the number of admissions that would be
expected in each IG and year if national age and sex specific admissions rates applied. The
observed and expected numbers of respiratory hospital admissions in the kth IG and tth year
are denoted by (Y, Ext) respectively, and the Poisson model, Yy ~ Poisson(Ey;Ryt) is typi-
cally used to model these data. Here Ry is the risk, relative to Fy, of disease in IG k and year
t, and a value of 1.2 corresponds to a 20% increased risk of disease. Operationally, the Ej;
is included as an offset term in the model on the natural log scale, that is O, = In(Ej,) in (1).

The pollution data we utilise are yearly average modelled concentrations of particulate mat-
ter less than 10 microns (PM;jg), which come from both anthropogenic (e.g., particles in car
exhaust fumes) and natural (e.g., sea salt) sources. These data are estimates on a 1 kilome-
tre square grid produced by a numerical simulation model, and full details can be found in
Ricardo-AEA (2015). These 1 kilometre square estimates are spatially misaligned with the
irregularly shaped polygonal IGs at which the disease and covariate data are available, and
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thus simple averaging is used to produce IG level PM;q estimates. Specifically, the median
value of PMg over the set of 1 kilometre grid squares having centroids lying within each IG
was computed, and if an IG was too small to contain a grid square centroid then the nearest
grid square was used as the concentration.

Finally, the data set contains 2 potential confounders that will be included in the model, both
of which are proxy measures of socio-economic deprivation (poverty). The main confounder in
spatio-temporal air pollution and health studies is smoking rates, but such smoking data are
unavailable. However, smoking rates are strongly linked to socio-economic deprivation, and
thus existing studies such as Haining, Li, Maheswaran, Blangiardo, Law, Best, and Richard-
son (2010) control for smoking effects using deprivation based proxy measures. Here we have
two measures of socio-economic deprivation, the average property price in each IG and year
(in hundreds of thousands), and the proportion of the working age population who are in
receipt of job seekers allowance (JSA), the latter being a benefit paid to individuals who are
unemployed and seeking employment.

These data are available in the CARBayesdata package in the object pollutionhealthdata,
and the package also contains the spatial polygon information for the Greater Glasgow and
Clyde health board study region in the object GGHB.IG as a SpatialPolygonsDataFrame
object. These data can be loaded using the following commands.

R> library("CARBayesdata")

R> library("sp")

R> data("GGHB.IG")

R> data("pollutionhealthdata")

The structure of pollutionhealthdata is shown below

R> head(pollutionhealthdata)

IG year observed expected pml0 jsa price
1 502000260 2007 97 98.24602 14.02699 2.25 1.150
2 502000261 2007 15 45.26085 13.30402 0.60 1.640
3 502000262 2007 49 92.36517 13.30402 0.95 1.750
4 502000263 2007 44 72.55324 14.00985 0.35 2.385
5 502000264 2007 68 125.41904 14.08074 0.80 1.645
6 S02000265 2007 24 55.04868 14.08884 1.25 1.760

The first column labelled IG is the set of unique identifiers for each IG, while observed
and expected are respectively the observed (e.g., Yi:) and expected (e.g., Ej) numbers of
hospital admissions due to respiratory disease. An exploratory measure of disease risk is
the standardised morbidity ratio (SMR), which for the kth IG and ¢th year is computed as
SMRy: = Yit/Eg:. However, due to the natural log link function in the Poisson model, the
covariates are related in the model to the natural log of the SMR. Therefore the code below
adds the SMR and the natural log of the SMR to the data set and produces a pairs() plot
showing the relationship between the variables.
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Figure 2: Scatterplot of the disease, pollution and covariate data.

R> pollutionhealthdata$SMR <- pollutionhealthdata$observed /

+ pollutionhealthdata$expected

R> pollutionhealthdata$logSMR <- log(pollutionhealthdata$SMR)

R> par(pty="s", cex.axis=1.5, cex.lab=1.5)

R> pairs(pollutionhealthdatal ,c(9, 5:7)], pch=19, cex=0.5, lower.panel=NULL,
+ panel=panel.smooth,

+ labels=c("1n(SMR)", "PM10", "JSA", "Price (*100,000)"))

The pairs plot shown in Figure 2 shows respectively positive and negative relationships be-
tween the natural log of SMR and the two deprivation covariates jsa and price, in both
cases suggesting that increasing levels of poverty are related to an increased risk of respira-
tory hospitalisation. There also appears to be a weak positive relationship between log(SMR)
and PM;jg, while the only relationship that exists between the covariates is a negative non-
linear one between jsa and price. Next, it is of interest to visualise the average spatial
pattern in the SMR over all five years, and the data can be appropriately aggregated using
the summarise() function from the dplyr package using the code below. The aggregation
is done by the second line, while the final line adds the aggregated averages to the GGHB.IG
SpatialPolygonsDataFrame object.

R> library("dplyr")

R> SMR.av <- summarise(group_by(pollutionhealthdata,IG), SMR.mean =
+ mean (SMR) )

R> GGHB.IG@data$SMR <- SMR.av$SMR.mean
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Figure 3: Map showing the average SMR over all five years from 2007 to 2011.

A spatial map of the aggregated SMR variable can be overlaid on a OpenStreetMap using
the functionality of the leaflet package. However, first the GGHB.IG object needs to have
its coordinate reference system changed to longitude and latitude as this is what the leaflet
package requires, which can be done using the following R code.

R> library(rgdal)
R> GGHB.IG <- spTransform(GGHB.IG, CRS("+proj=longlat +datum=WGS84 +no_defs"))

Then a map of SMR can be drawn using the following code.

R> library(leaflet)

R> colours <- colorNumeric(palette = "BuPu", domain = GGHB.IG@data$SMR)
R> mapl <- leaflet(data=GGHB.IG) 7>}

+ addTiles() %>%

+ addPolygons (fillColor = “colours(SMR), color="red", weight=1,

+ fillOpacity = 0.7) 7>}

+ addLegend(pal = colours, values = GGHB.IG@data$SMR, opacity = 1,

+ title="SMR") >

+ addScaleBar (position="bottomleft")

R> mapl

The map is shown in Figure 3, where the light blue shaded areas are low risk (SMR<1) while
the purple areas exhibit elevated risks (SMR>1). The map shows that the main high-risk
areas are in the east-end of Glasgow in the east of the study region, and the Greenock area
in the far west of the region on the lower bank of the river Clyde. The analysis that follows
requires us to compute the neighbourhood matrix W and a 1istw object variant of the same
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spatial information, the latter being used in a hypothesis test for spatial autocorrelation.
Both of these quantities can be computed from the SpatialPolygonsDataFrame object using
functionality from the spdep package, and code to achieve this is shown below.

R> 1library("spdep")

R> W.nb <- poly2nb(GGHB.IG, row.names = SMR.av$IG)
R> W.list <- nb2listw(W.nb, style = "B")

R> W <- nb2mat(W.nb, style = "B")

Here W is a binary K x K neighbourhood matrix computed based on sharing a common border,
and W.list is the listw object variant of this spatial information.

5.2. Assessing the presence of spatial autocorrelation

The spatio-temporal models in CARBayesST allow for spatio-temporal autocorrelation via
random effects, which capture the remaining autocorrelation in the disease data after the
effects of the known covariates have been accounted for. Therefore, we assess the presence
of spatial autocorrelation in our data set by first computing the residuals from a simple
overdispersed Poisson log-linear model that incorporates the covariate effects. This model is
fitted using the code:

R> formula <- observed ~ offset(log(expected)) + jsa + price + pm10
R> modell <- glm(formula = formula, family = "quasipoisson",

+ data = pollutionhealthdata)

R> resid.glm <- residuals(modell)

R> summary(modell)$coefficients

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.59752496 0.054333524 -10.99735 5.287385e-27
jsa 0.06041994 0.003231475 18.69732 1.467196e-69
price -0.28293191 0.018292049 -15.46748 8.225472e-50
pm10 0.04174701 0.003282156 12.71938 4.344434e-35

R> summary(modell)$dispersion
[1] 4.399561

The results show significant effects of all three covariates on disease risk, as well as substan-
tial overdispersion with respect to the Poisson equal mean and variance assumption (over
dispersion parameter equal to around 4.40). To quantify the presence of spatial autocorrela-
tion in the residuals from this model we can compute Moran’s I statistic (Moran 1950) and
conduct a permutation test for each year of data separately. The permutation test has the
null hypothesis of no spatial autocorrelation and an alternative hypothesis of positive spatial
autocorrelation, and is conducted using the moran.mc() function from the spdep package.
The test can be implemented for the first year of residuals (2007) using the code below.

R> moran.mc(x = resid.glm[1:271], listw = W.list, nsim = 10000)
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Monte-Carlo simulation of Moran I

data: resid.glm[1:271]
weights: W.list
number of simulations + 1: 10001

statistic = 0.10358, observed rank = 9972, p-value = 0.0029
alternative hypothesis: greater

The estimated Moran’s I statistic is 0.10358 and the p-value is less than 0.05, suggesting strong
evidence of unexplained spatial autocorrelation in the residuals from 2007 after accounting
for the covariate effects. Similar results were obtained for the other years and are not shown
for brevity. We note that residual temporal autocorrelation could be assessed similarly for
each IG, for example by computing the lag-1 autocorrelation coefficient, but with only 5 time
points the resulting estimates would not be reliable. These results show that the assumption
of independence is not valid for these data, and that spatio-temporal autocorrelation should
be allowed for when estimating the covariate effects.

5.3. Spatio-temporal modelling with CARBayesST

We illustrate model fitting in CARBayesST by applying the ST.CARar () model to the data,
details of which are given in Section 2. The model can be fitted with the following one-line
function call, and we note that all data vectors (response, offset and covariates) have to be
ordered so that the first K data points relate to all spatial units at time 1, the next K data
points to all spatial units at time 2 and so on.

R> library("CARBayesST")

R> model2 <- ST.CARar(formula = formula, family = "poisson",

+ data = pollutionhealthdata, W = W, burnin = 20000, n.sample = 220000,
+ thin = 10)

In the above code the covariate and offset component defined by formula is the same as for
the simple Poisson log-linear model fitted earlier, and the neighbourhood matrix is binary and
defined by whether or not two areas share a common border. The ST.CARar() model is run
for 220,000 MCMC samples, the first 20,000 of which are removed by the burn-in period. The
samples are then thinned by 10 to reduce the autocorrelation of the Markov chain, resulting
in 20,000 samples for inference. A summary of the model results can be visualised using the
print () function developed for CARBayesST, which gives a very similar summary to that
produced in the CARBayes package.

R> print (model2)

HHHHEEE R

#### Model fitted

HHHHHE R

Likelihood model - Poisson (log link function)
Latent structure model - Autoregressive CAR model
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Regression equation - observed ~ offset(log(expected)) + jsa + price + pml0

HHHHARH S
#### Results
HHHHHR
Posterior quantities for selected parameters and DIC

Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag

(Intercept) -0.6604 -0.8376 -0.4826 20000 45.2 1084.6 1.5
jsa 0.0652 0.0548 0.0759 20000 45.2 960.6 2.1
price -0.1958 -0.2376 -0.1544 20000 45.2 1970.9 0.4
pml0 0.0346 0.0221 0.0464 20000 45.2 1105.5 -2.7
tau2 0.0584 0.0493 0.0688 20000 100.0 5545.2 1.6
rho.S 0.5573 0.4011 0.7197 20000 43.7 3286.8 1.8
rho.T 0.7574 0.6955 0.8163 20000 100.0 11143.9 -1.4
DIC = 10397.92 p.d = 773.2666 LMPL = -4533.099

The output from the print() function shows that all three covariates exhibit relationships
with disease risk, as none of the 95% credible intervals contain zero. Furthermore, the spatial
(rho.S) and temporal (rho.T) dependence parameters exhibit relatively high values in the
unit interval, suggesting that both spatial and temporal autocorrelation are present in these
data after adjusting for the covariate effects. The model object model2 is a list, and details
of its elements are described in Section 3 of this paper. A list object containing the MCMC
samples for each individual parameter and the fitted values are stored in model2$samples,
and each element of this list corresponds to a different group of parameters and is stored as
a mcmc object from the coda package. Applying the summary () function to this object yields:

R> summary(model2$samples)

Length Class Mode

beta 16000 mcmc numeric
phi 5420000 mcmc numeric
rho 8000 mcmc numeric
tau2 4000 mcmc numeric
fitted 5420000 mcmc numeric
Y 1 mcmc logical

Here the Y object is NA as there are no missing Yj; observations in this data set. If there had
been say m missing values, then the Y component of the list would have contained m columns,
with each one containing posterior predictive samples for one of the missing observations. The
key interest in this analysis is the effects of the covariates on disease risk, which for Poisson
models are typically presented as relative risks. The relative risk for an € unit increase in a
covariate with regression parameter 35 is given by the transformation exp(ef3s), and a relative
risk of 1.02 corresponds to a 2% increased risk if the covariate increased by €. The code below
draws the posterior relative risk distributions for a one unit increase in each covariate, which
are all realistic increases given the variation observed in the data in Figure 2.
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Figure 4: Posterior distributions for the covariate effects.

R> colnames(model2$samples$beta) <- c("Intercept", "JSA", "Price", "PM10")
R> plot(exp(model2$samples$betal , -1]))

These distributions are displayed in Figure 4, where the left side shows trace-plots and the
right side shows density estimates. Posterior medians and 95% credible intervals for the
relative risks can be computed using the summarise.samples() function from the CARBayes
package using the code below:

R> library("CARBayes")

R> parameter.summary <- summarise.samples (exp(model2$samples$betal , -1]),
+ quantiles = c(0.5, 0.025, 0.975))

R> round(parameter.summary$quantiles, 3)

0.5 0.025 0.975
[1,] 1.067 1.056 1.079
[2,] 0.822 0.789 0.857
[3,] 1.035 1.022 1.047

The output above shows that the posterior median and 95% credible interval for the relative
risk of a 1ugm ™ increase in PMyq is 1.035 (1.022, 1.047), suggesting that such an increase
corresponds to 3.5% additional hospital admissions. The corresponding relative risk for a
one percent increase in JSA is 1.067 (1.055, 1.079), while for a one hundred thousand pound
increase in property price (the units for the property price data were in hundreds of thousands)
the risk is 0.822 (0.789, 0.857). Thus, we find that increased air pollution concentrations are
related, at this ecological level, to increased respiratory hospitalisation, while decreased socio-
economic deprivation, as measured by both property price and JSA, is related to decreased
risks of hospital admission.

6. Example 2 - Monitoring the changing state of the housing market
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This second example focuses on the state of the housing market, specifically property sales,
and aims to quantify its changing trend over time in an era that encompasses the global
financial crisis that began in late 2007.

6.1. Data and exploratory analysis

The study region is the same as for the first example, namely the set of K = 271 inter-
mediate geographies that make up the Greater Glasgow and Clyde health board. The data
also come from the same source (Scottish Statistics, http://statistics.gov.scot/), and
include yearly observations of house sales from 2003 to 2013 inclusive. The response variable
is the number of property sales Yy in each IG (indexed by k) and year (indexed by t), and
we additionally have the total number of properties ng; in each IG and year that will be
used in the model as the offset term. We use the following Poisson log-linear model for these
data, Yy; ~ Poisson(ng:fx), where 0y, is the rate of property sales as a proportion of the
total number of properties. We note that we have not used a binomial model here as a single
property could sell more than once in a year, meaning that each property does not constitute
a Bernoulli trial. Thus 0y, is not strictly the proportion of properties that sell in a year, but
is on approximately the same scale for interpretation purposes.

These data are available in the CARBayesdata package in the object salesdata, as is the
spatial polygon information for the Greater Glasgow and Clyde health board study region (in
the object GGHB.IG). These data can be loaded using the following commands.

R> 1library("CARBayesdata")
R> library("sp")

R> data("GGHB.IG")

R> data("salesdata")

The data.frame salesdata contain 4 columns, the intermediate geography code (IG), the
year the data relate to (year), the number of property sales (sales, Yj;) and the total number
of properties (stock, ng:). We visualise the temporal trend in these data using the code below,
where the first line creates the raw rate of property sales as a proportion of the total number
of properties.

R> salesdata$salesprop <- salesdata$sales / salesdata$stock

R> boxplot(salesdata$salesprop ~ salesdata$year, range = 0, xlab = "Year",
+ ylab = "Property sales rate",
+ col = "darkseagreen", border = "navy")

This produces the boxplot shown in Figure 5, where the global financial crisis began in 2007.
The plot shows a clear step-change in property sales between 2007 and 2008, as sales were
increasing up to and including 2007, before markedly decreasing in subsequent years. Sales
in the last year of 2013 show slight evidence of increasing relative to the previous 4 years,
possibly suggesting the beginning of an upturn in the market. Also there appears to be a
change in the level of spatial variation from year to year, with larger amounts of spatial
variation observed before the global financial crisis. The spatial pattern in the average (over
time) rate of property sales as a proportion of the total number of properties is computed
using the code below.
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Figure 5: Boxplots showing the temporal trend in the raw rate of property sales as a proportion
of the total number of properties between 2003 and 2013.

R> 1library("dplyr")

R> salesprop.av <- summarise(group_by(salesdata, IG),
+ salesprop.mean = mean(salesprop))

R> GGHB.IG@data$sales <- salesprop.av$salesprop.mean

This variable can be mapped using the code below, and the result is displayed in Figure 6.

R> library(rgdal)

R> GGHB.IG <- spTransform(GGHB.IG, CRS("+proj=longlat +datum=WGS84 +no_defs"))

R> library(leaflet)

R> colours <- colorNumeric(palette = "BuPu", domain = GGHB.IG@data$sales)

R> mapl <- leaflet(data=GGHB.IG) 7>

addTiles() 7%>%

addPolygons (fillColor = ~“colours(sales), color="red", weight=1,
fillOpacity = 0.7) %>}

addLegend(pal = colours, values = GGHB.IG@data$sales, opacity = 1,
title="Sales") %>}

addScaleBar (position="bottomleft")

R> mapl

The map shows a largely similar pattern to that seen for respiratory disease risk in Figure
3, with areas that exhibit relatively high sales rates largely being the same ones that exhibit
relatively low disease risk. Figures 5 and 6 highlight the change in temporal dynamics and the
spatial structure in property sales in Glasgow, and we now apply the ST.CARsepspatial ()
model from CARBayesST to more formally quantify these features. This model is chosen due
to the changing levels of spatial variation in each year, as illustrated by Figure 5.
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Figure 6: Map showing the average (between 2003 to 2013) raw rate of property sales as a
proportion of the total number of properties.
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6.2. Quantifying the changing temporal trends and spatial patterns in sales
rates

The extent to which the region-wide average level of sales and its spatial variation and spa-
tial structure changes over time can be assessed by applying the model proposed by Napier
et al. (2016) to the data, which can be implemented using the ST.CARsepspatial () function.
Before fitting this model we need to create the neighbourhood matrix using the following
code:

R> 1library("spdep")
R> W.nb <- poly2nb(GGHB.IG, row.names = salesprop.av$salesprop.mean)
R> W <- nb2Zmat(W.nb, style = "B")

Then the model can be fitted using the code below, where inference is again based on 20,000
post burn-in and thinned MCMC samples.

R> library("CARBayesST")

R> formula <- sales ~ offset(log(stock))

R> modell <- ST.CARsepspatial(formula = formula, family = "poisson",
+ data = salesdata, W = W, burnin = 20000, n.sample = 220000,
+ thin = 10)

A summary of the model fit can be obtained using the print() function, and the output is
similar to that shown in Example 1 and is not shown for brevity. The model fitted represents
the estimated rate of property sales by
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Ore = exp(B1+ dut + 0t),

which is the sum of an overall intercept term 1, a space-time effect ¢y; with a time period
specific variance, and a region-wide temporal trend d;. The mean and standard deviation of
{0kt } over space for each year is computed by the following code, which produces the posterior
median and a 95% credible interval for each quantity for each year.

R> trend.mean <- array(NA, c(11, 3))
R> trend.sd <- array(NA, c(11, 3))
R> for(i in 1:11)

+ {
+ posterior <- exp(modell$samples$phil , ((i-1) * 271 + 1):(i * 271)] +
+ matrix(rep(modell$samples$beta + modell$samples$deltal , i], 271),
+ ncol = 271, byrow = FALSE))
+ trend.mean[i, ] <- quantile(apply(posterior, 1, mean),
c(0.5, 0.025, 0.975))
+ trend.sd[i, ] <- quantile(apply(posterior, 1, sd),
+ c(0.5, 0.025, 0.975))
+ }

These temporal trends in the average rate of property sales and its level of spatial variation
can be plotted by the following code, and the result is displayed in Figure 7.

R> par(mfrow=c(2, 1))

R> plot(jitter(salesdata$year), salesdata$salesprop, pch=19, cex=0.2,
+ col="blue", xlab="Year", main="(a)", ylab="Average sales rate",
+ ylim=c(0, 0.11), cex.axis=1.5, cex.lab=1.5, cex.main=1.5)

R> 1ines(2003:2013, trend.mean[ ,1], col="red", type="1")

R> 1ines(2003:2013, trend.mean[ ,2])

R> 1ines(2003:2013, trend.mean[ ,3])

R> plot(2003:2013, trend.sd[ ,1], col = "red", type = "1", xlab = "Year",
+ main = "(b)", ylab = "Spatial standard deviation",

+ ylim c(0, 0.06), cex.axis=1.5, cex.lab=1.5, cex.main=1.5)

R> 1ines(2003:2013, trend.sd[ ,2])

R> 1ines(2003:2013, trend.sd[ ,3])

The figure shows that both the region-wide average (panel (a)) and the level of spatial varia-
tion (as measured by the spatial standard deviation, panel (b)) in property sales rates show
the same underlying trend, with maximum values just before the global financial crisis in 2007,
and then sharp decreases afterwards. This provides some empirical evidence that the global
financial crisis negatively affected the housing market in Greater Glasgow, with average sales
rates dropping from just under 6.0% in 2007 to 3.3% in 2008. The spatial standard deviation
also dropped from 0.050 to 0.036 over the same two-year period, suggesting that the global
financial crisis had the effect of reducing the disparity in sales rates in different regions of
Greater Glasgow. We note that when measuring the spatial standard deviation we have not
simply presented the posterior distribution of 72, because this relates to the linear predictor
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Figure 7: Posterior median (red) and 95% credible interval (black) for the temporal trend in:
(a) region-wide average property sales rates; and (b) spatial standard deviation in property
sales rates. In panel (a) the blue dots are the raw sales proportions for each area and year
(jittered in the x direction to improve the presentation).
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scale and thus the results change after the exponential transformation to the {0y} scale due
to a non-constant mean level (due to the d; term).

The posterior median sales rate {0} is computed and then plotted for the 6 odd num-
bered years using the code below and the spplot() function. The first 3 lines create a
data.frame object of estimated sales rates, while the fourth line adds these sales rate data to
the SpatialPolygonsDataFrame object. The remaining lines plot the estimated sales rates
for odd numbered years.

R> rate.est <- matrix(modell$fitted.values / salesdata$stock,

+ nrow = nrow(W), byrow = FALSE)

R> rate.est <- as.data.frame(rate.est)

R> colnames(rate.est) <- c("r2003", "r2004", "r2005", "r2006", "r2007",

+ "r2008", "r2009", "r2010", "r2011", "r2012", "r2013")

R> GGHB.IG@data <- data.frame(GGHB.IG@data, rate.est)

R> breakpoints <- c(0, quantile(salesprop.av$salesprop.mean, seq(0.1, 0.9, 0.1)),
+ 0.1)

R> spplot(GGHB.IG, c("r2011", "r2013", "r2007", "r2009", "r2003", "r2005"),
names.attr = c("Rate 2011", "Rate 2013", "Rate 2007", "Rate 2009",

"Rate 2003", "Rate 2005"),

xlab = "Easting", ylab = "Northing", scales = list(draw = TRUE),

at = breakpoints, col.regions = terrain.colors(n = length(breakpoints - 1)),
par.settings=list(fontsize=1list (text=15)))

+ + + + +

The maps are displayed in Figure 8, and show the clear changing spatial pattern in sales rates
over time. The spatial rates for 2003 to 2007 are largely consistent, but a clear step-change
is evident between 2007 and 2009, which incorporates the start of the global financial crisis.
The figure shows that the downturn in sales rates continues into 2011 but that the property
market is beginning an upturn by 2013. So in conclusion, Figures 7 and 8 show that the
global financial crisis in 2007 resulted in a downturn in both the region-wide rate of sales and
the level of spatial variation in sales across Glasgow, but that areas of high sales, such as the
west-end of Glasgow (the thin strip of orange shaded areas north of the river in 2009), always
remained higher than other parts of the study region.

7. Discussion

CARBayesST is the first software package dedicated to fitting spatio-temporal CAR type
models to areal unit data. Future development of the software will be in two main directions.
First, as the literature on spatio-temporal modelling advances we aim to increase the number
of spatio-temporal models that can be implemented, giving the user an even wider set of
modelling tools. Second, with the rapid increase in the availability of small-area data, we aim
to develop a suite of multivariate space-time models (MVST). The development of MVST
methodology for areal unit data is in its infancy, and the ability to jointly examine the
spatio-temporal patterns in multiple response variables simultaneously allows one to address
questions that cannot be addressed by single variable models. For example, in a public
health context it allows one to estimate overall and disease specific spatio-temporal patterns
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in disease risk, allowing one to see which areas repeatedly signal at high risk for all diseases,
and which exhibit elevated risks for only one disease. In the housing context of Example 2,
an MVST approach would allow one to extend the analysis carried out by different property
types, e.g., flats, terraced houses, etc, which would allow more insight to be gained about the
exact nature of the housing market.
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