Two methods based on the Forward Imputation approach are implemented for the imputation of quantitative missing data. One method alternates Nearest Neighbour Imputation and Principal Component Analysis (function 'ForImp.PCA'), the other uses Nearest Neighbour Imputation with the Mahalanobis distance (function 'ForImp.Mahala').

Documentation

Manual: GenForImp.pdf
Vignette: None available.

Maintainer: Alessandro Barbiero <alessandro.barbiero at unimi.it>

Author(s): Nadia Solaro, Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

Install package and any missing dependencies by running this line in your R console:

install.packages("GenForImp")

Depends mvtnorm, sn
Imports
Suggests
Enhances
Linking to
Reverse
depends
Reverse
imports
Reverse
suggests
Reverse
enhances
Reverse
linking to

Package GenForImp
Materials
URL
Task Views
Version 1.0
Published 2015-02-27
License GPL-3
BugReports
SystemRequirements
NeedsCompilation no
Citation
CRAN checks GenForImp check results
Package source GenForImp_1.0.tar.gz